Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Environ Int ; 190: 108894, 2024 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-39047544

RESUMO

BACKGROUND: The potential for residential greenness to improve cardiovascular health through both physical and psychological mechanisms is well recognized. However, evidence from rapidly urbanizing developing countries and cohort-based causal inference approaches, remains limited. We aim to examine the effect of residential greenness and time to cardiovascular mortality in South China. METHODS: We utilized data from a community-based population survey involving 748,209 participants at baseline from 2009 to 2015, followed up until 2020. Residential greenness exposure was assessed by the annual Normalized Difference Vegetation Index (NDVI) in the 500 m radius of each participant's residence. We used time-varying proportional hazard Cox models coupled with inverse probability weighting to fit marginal structural models and obtain hazard ratios (HRs) for cardiovascular disease (CVD) mortality after adjusting for confounders. Multiple effect modifiers on both additive and multiplicative scales were further explored. RESULTS: A total of 15,139 CVD-related deaths were identified during a median of 7.9 years of follow-up. A protective effect was found between higher greenness exposure and reduced CVD mortality, with a 9.3 % lower rate of total CVD mortality (HR 0.907, 95 % CI 0.859-0.957) based on a 0.1 increase in annual average NDVI. Demographic (age, marital status) and lifestyle factors (smoking, drinking status) were found to modify the association between residential greenness and CVD mortality (all P interaction values < 0.05 or 95 %CI for RERI excluded the value 0). Notably, this effect was more pronounced among older adults, married, and individuals having healthier lifestyles, indicating a greater benefit from greenness for these subgroups. CONCLUSIONS: Our findings support a causal link between increased residential greenness exposure and a reduced risk of CVD mortality in South China with marked heterogenous effects, which has public health implications for cultivating greener urban environments to mitigate the impact of CVD within the context of rapid urbanization.

3.
Nat Commun ; 15(1): 3210, 2024 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-38615070

RESUMO

Cross-reactive antibodies with Fc receptor (FcR) effector functions may mitigate pandemic virus impact in the absence of neutralizing antibodies. In this exploratory study, we use serum from a randomized placebo-controlled trial of seasonal trivalent influenza vaccination in children (NCT00792051) conducted at the onset of the 2009 H1N1 pandemic (pH1N1) and monitored for infection. We found that seasonal vaccination increases pH1N1 specific antibodies and FcR effector functions. Furthermore, prospective baseline antibody profiles after seasonal vaccination, prior to pH1N1 infection, show that unvaccinated uninfected children have elevated ADCC effector function, FcγR3a and FcγR2a binding antibodies to multiple pH1N1 proteins, past seasonal and avian (H5, H7 and H9) strains. Whereas, children that became pH1N1 infected after seasonal vaccination have antibodies focussed to seasonal strains without FcR functions, and greater aggregated HA-specific profiles for IgM and IgG3. Modeling to predict infection susceptibility, ranked baseline hemagglutination antibody inhibition as the highest contributor to lack of pH1N1 infection, in combination with features that include pH1-IgG1, H1-stem responses and FcR binding to seasonal vaccine and pH1 proteins. Thus, seasonal vaccination can have benefits against pandemic influenza viruses, and some children already have broadly reactive antibodies with Fc potential without vaccination and may be considered 'elite influenza controllers'.


Assuntos
Vírus da Influenza A Subtipo H1N1 , Vacinas contra Influenza , Influenza Humana , Criança , Humanos , Influenza Humana/epidemiologia , Influenza Humana/prevenção & controle , Estudos Prospectivos , Anticorpos Antivirais , Anticorpos Neutralizantes , Imunoglobulina G
4.
Virol J ; 21(1): 70, 2024 03 21.
Artigo em Inglês | MEDLINE | ID: mdl-38515117

RESUMO

Since the emergence of SARS-CoV-2, different variants and subvariants successively emerged to dominate global virus circulation as a result of immune evasion, replication fitness or both. COVID-19 vaccines continue to be updated in response to the emergence of antigenically divergent viruses, the first being the bivalent RNA vaccines that encodes for both the Wuhan-like and Omicron BA.5 subvariant spike proteins. Repeated infections and vaccine breakthrough infections have led to complex immune landscapes in populations making it increasingly difficult to assess the intrinsic neutralizing antibody responses elicited by the vaccines. Hong Kong's intensive COVID-19 containment policy through 2020-2021 permitted us to identify sera from a small number of infection-naïve individuals who received 3 doses of the RNA BNT162b2 vaccine encoding the Wuhan-like spike (WT) and were boosted with a fourth dose of the WT vaccine or the bivalent WT and BA.4/5 spike (WT + BA.4/5). While neutralizing antibody to wild-type virus was comparable in both vaccine groups, BNT162b2 (WT + BA.4/BA.5) bivalent vaccine elicited significantly higher plaque neutralizing antibodies to Omicron subvariants BA.5, XBB.1.5, XBB.1.16, XBB.1.9.1, XBB.2.3.2, EG.5.1, HK.3, BA.2.86 and JN.1, compared to BNT162b2 monovalent vaccine. The single amino acid substitution that differentiates the spike of JN.1 from BA.2.86 resulted in a profound antigenic change.


Assuntos
Vacina BNT162 , COVID-19 , Humanos , Anticorpos Amplamente Neutralizantes , SARS-CoV-2/genética , Vacinas contra COVID-19 , COVID-19/prevenção & controle , Anticorpos Neutralizantes , Vacinação , Anticorpos Antivirais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA