Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Thorac Cancer ; 6(1): 17-24, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26273330

RESUMO

Most tumor cells show different metabolic pathways than normal cells. Even under the conditions of sufficient oxygen, they produce energy by a high rate of glycolysis followed by lactic acid fermentation in the cytosol, which is known as aerobic glycolysis or the Warburg effect. Lung cancer is a malignant tumor with one of the highest incidence and mortality rates in the world at present. However, the exact mechanisms underlying lung cancer development remain unclear. The three key enzymes of glycolysis are hexokinase, phosphofructokinase, and pyruvate kinase. Lactate dehydrogenase catalyzes the transfer of pyruvate to lactate. All four enzymes have been reported to be overexpressed in tumors, including lung cancer, and can be regulated by many oncoproteins to promote tumor proliferation, migration, and metastasis with dependence or independence of glycolysis. The discovery of aerobic glycolysis in the 1920s has provided new means and potential therapeutic targets for lung cancer.

2.
Acta Pharmacol Sin ; 35(5): 636-44, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24786234

RESUMO

AIM: Myeloperoxidase (MPO) and glutathione S-transferase pi 1 (GSTP1) are important carcinogen-metabolizing enzymes. The aim of this study was to investigate the association between the common polymorphisms of MPO and GSTP1 genes and lung cancer risk in Chinese Han population. METHODS: A total of 266 subjects with lung cancer and 307 controls without personal history of the disease were recruited in this case control study. The tagSNPs approach was used to assess the common polymorphisms of MOP and GSTP1 genes and lung cancer risk according to the disequilibrium information from the HapMap project. The tagSNP rs7208693 was selected as the polymorphism site for MPO, while the haplotype-tagging SNPs rs1695, rs4891, rs762803 and rs749174 were selected as the polymorphism sites for GSTP1. The gene polymorphisms were confirmed using real-time PCR, cloning and sequencing. RESULTS: The four GSTP1 haplotype-tagging SNPs rs1695, rs4891, rs762803 and rs749174, but not the MPO tagSNP rs7208693, exhibited an association with lung cancer susceptibility in smokers in the overall population and in the studied subgroups. When Phase 2 software was used to reconstruct the haplotype for GSTP1, the haplotype CACA (rs749174+rs1695 + rs762803+rs4891) exhibited an increased risk of lung cancer among smokers (adjust odds ratio 1.53; 95%CI 1.04-2.25, P=0.033). Furthermore, diplotype analyses demonstrated that the significant association between the risk haplotype and lung cancer. The risk haplotypes co-segregated with one or more biologically functional polymorphisms and corresponded to a recessive inheritance model. CONCLUSION: The common polymorphisms of the GSTP1 gene may be the candidates for SNP markers for lung cancer susceptibility in Chinese Han population.


Assuntos
Povo Asiático/genética , Predisposição Genética para Doença/genética , Glutationa S-Transferase pi/genética , Neoplasias Pulmonares/etiologia , Neoplasias Pulmonares/genética , Peroxidase/genética , Polimorfismo de Nucleotídeo Único/genética , Adulto , Idoso , Idoso de 80 Anos ou mais , Estudos de Casos e Controles , Feminino , Projeto HapMap , Haplótipos/genética , Humanos , Masculino , Pessoa de Meia-Idade , Risco
3.
Asian Pac J Cancer Prev ; 14(8): 4485-94, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24083690

RESUMO

Epidermal growth factor receptor (EGFR) is considered to be one of the key driver genes in non-small cell lung cancer (NSCLC). Several clinical trials have shown great promise of EGFR tyrosine kinase inhibitors (TKIs) in the first-line treatment of NSCLC. Many advances have been made in the understanding of EGFR signal transduction network and the interaction between EGFR and tumor microenvironment in mediating cancer survival and development. The concomitant targeted therapy and radiation is a new strategy in the treatment of NSCLC. A number of preclinical studies have demonstrated synergistic anti-tumor activity in the combination of EGFR inhibitors and radiotherapy in vitro and in vivo. In the present review, we discuss the rationale of the combination of EGFR inhibitors and radiotherapy in the treatment of NSCLC.


Assuntos
Carcinoma Pulmonar de Células não Pequenas/terapia , Quimiorradioterapia , Receptores ErbB/antagonistas & inibidores , Neoplasias Pulmonares/terapia , Inibidores de Proteínas Quinases/uso terapêutico , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA