Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
BMC Bioinformatics ; 25(1): 120, 2024 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-38515026

RESUMO

BACKGROUND: Whole genome variants offer sufficient information for genetic prediction of human disease risk, and prediction of animal and plant breeding values. Many sophisticated statistical methods have been developed for enhancing the predictive ability. However, each method has its own advantages and disadvantages, so far, no one method can beat others. RESULTS: We herein propose an Ensemble Learning method for Prediction of Genetic Values (ELPGV), which assembles predictions from several basic methods such as GBLUP, BayesA, BayesB and BayesCπ, to produce more accurate predictions. We validated ELPGV with a variety of well-known datasets and a serious of simulated datasets. All revealed that ELPGV was able to significantly enhance the predictive ability than any basic methods, for instance, the comparison p-value of ELPGV over basic methods were varied from 4.853E-118 to 9.640E-20 for WTCCC dataset. CONCLUSIONS: ELPGV is able to integrate the merit of each method together to produce significantly higher predictive ability than any basic methods and it is simple to implement, fast to run, without using genotype data. is promising for wide application in genetic predictions.


Assuntos
Genoma , Melhoramento Vegetal , Animais , Humanos , Genótipo , Genômica , Aprendizado de Máquina , Modelos Genéticos , Fenótipo , Polimorfismo de Nucleotídeo Único , Teorema de Bayes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA