Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Neurotherapeutics ; 21(4): e00353, 2024 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-38575503

RESUMO

Driven by the scarcity of effective treatment options in clinical settings, the present study aimed to identify a new potential target for Alzheimer's disease (AD) treatment. We focused on Lars2, an enzyme synthesizing mitochondrial leucyl-tRNA, and its role in maintaining mitochondrial function. Bioinformatics analysis of human brain transcriptome data revealed downregulation of Lars2 in AD patients compared to healthy controls. During in vitro experiments, the knockdown of Lars2 in mouse neuroblastoma cells (neuro-2a cells) and primary cortical neurons led to morphological changes and decreased density in mouse hippocampal neurons. To explore the underlying mechanisms, we investigated how downregulated Lars2 expression could impede the phosphatidylinositol 3-kinase/protein kinase B (PI3K-AKT) pathway, thereby mitigating AKT's inhibitory effect on glycogen synthase kinase 3 beta (GSK3ß). This led to the activation of GSK3ß, causing excessive phosphorylation of Tau protein and subsequent neuronal degeneration. During in vivo experiments, knockout of lars2 in hippocampal neurons confirmed cognitive impairment through the Barnes maze test, the novel object recognition test, and nest-building experiments. Additionally, immunofluorescence assays indicated an increase in p-tau, atrophy in the hippocampal region, and a decrease in neurons following Lars2 knockout. Taken together, our findings indicate that Lars2 represents a promising therapeutic target for AD.

2.
J Org Chem ; 86(17): 12084-12092, 2021 09 03.
Artigo em Inglês | MEDLINE | ID: mdl-34342452

RESUMO

A novel catalyst-free radical oxidative C-H annulation reaction of arylamines with α-keto acids toward benzoxazin-2-ones synthesis under mild conditions was developed. This hypervalent iodine(III)-promoted process eliminated the use of a metal catalyst or additive with high levels of functional group tolerance. Hypervalent iodine(III) was both an oxidant and a radical initiator for this reaction. The synthetic utility of this method was confirmed by the synthesis of the natural product cephalandole A.


Assuntos
Iodo , Catálise , Cetoácidos , Oxirredução , Estresse Oxidativo
3.
RSC Adv ; 9(21): 12110-12123, 2019 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-35548379

RESUMO

Multi-drug resistance (MDR) of tumor cells has greatly hindered the therapeutic efficacy of chemotherapeutic drugs, resulting in chemotherapy failure, while overexpression of ATP-binding cassette (ABC) transporters in cell membranes is the leading cause of MDR. In this study, we reported novel self-assembled triphenylphosphine-quercetin-polyethylene glycol-monoclonal antibody nanoparticles (TQ-PEG-mAb NPs) for overcoming MDR primarily through mitochondrial damage to block ATP supply to ABC transporters both in vitro and in vivo. The doxorubicin (DOX)-loaded NPs (TQ/DOX-PEG-mAb) were composed of two drugs (TQ and DOX) and an outer shielding shell of the PEG-mAb conjugate. Besides, the outer shell could be acid-responsively detached to expose the positive charge of TQ inside the NPs to enhance cellular uptake. TQ was proved to effectively induce mitochondrial damage with increased ROS levels and depolarization of mitochondrial membrane potential (MMP), leading to prominently reduced ATP supply to ABC transporters. Moreover, the involvement of the anti-vascular endothelial growth factor (VEGF) mAb was not only for efficient targeting but also for combined therapy. Consequently, TQ/DOX-PEG-mAb showed that the internalized amount of DOX was largely improved while the efflux amount was dramatically inhibited on MCF-7/ADR cells, indicating excellent reversal of DOX resistance. Importantly, the growth of DOX-resistant breast tumors was significantly inhibited with no evident systemic toxicity. Therefore, the employment of TQ-PEG-mAb is believed to be a new approach to improve the efficacy of chemotherapeutic drugs in MDR tumors.

4.
Chem Commun (Camb) ; 53(62): 8790-8793, 2017 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-28736782
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA