Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Sheng Li Xue Bao ; 75(2): 188-196, 2023 Apr 25.
Artigo em Chinês | MEDLINE | ID: mdl-37089093

RESUMO

Renal outer medullary potassium (ROMK) channel is an important K+ excretion channel in the body, and K+ secreted by the ROMK channels is most or all source of urinary potassium. Previous studies focused on the ROMK channels of thick ascending limb (TAL) and collecting duct (CD), while there were few studies on the involvement of ROMK channels of the late distal convoluted tubule (DCT2) in K+ excretion. The purpose of the present study was mainly to record the ROMK channels current in renal DCT2 and observe the effect of high potassium diet on the ROMK channels by using single channel and whole-cell patch-clamp techniques. The results showed that a small conductance channel current with a conductance of 39 pS could be recorded in the apical membrane of renal DCT2, and it could be blocked by Tertiapin-Q (TPNQ), a ROMK channel inhibitor. The high potassium diet significantly increased the probability of ROMK channel current occurrence in the apical membrane of renal DCT2, and enhanced the activity of ROMK channel, compared to normal potassium diet (P < 0.01). Western blot results also demonstrated that the high potassium diet significantly up-regulated the protein expression levels of ROMK channels and epithelial sodium channel (ENaC), and down-regulated the protein expression level of Na+-Cl- cotransporter (NCC). Moreover, the high potassium diet significantly increased urinary potassium excretion. These results suggest that the high potassium diet may activate the ROMK channels in the apical membrane of renal DCT2 and increase the urinary potassium excretion by up-regulating the expression of renal ROMK channels.


Assuntos
Canais de Potássio Corretores do Fluxo de Internalização , Canais de Potássio Corretores do Fluxo de Internalização/metabolismo , Túbulos Renais Distais/metabolismo , Potássio/metabolismo , Canais Epiteliais de Sódio/metabolismo , Dieta
2.
Int Immunopharmacol ; 113(Pt B): 109427, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36375321

RESUMO

Idiopathic pulmonary fibrosis (IPF) is a chronic, progressive, and fibrotic interstitial lung disease with lesions confined to the lungs and is prevalent in the middle-aged and elderly population. The average survival time after diagnosis of IPF is only 3-5 years, and the mortality rate is higher than that of most tumours. IPF is called a "tumour-like disease". Entrectinib is a new oral formulation developed by Roche and was approved by the FDA to treat a wide variety of tumours. In this study, we explored the potential effects and mechanisms of entrectinib on pulmonary fibrosis in vitro and in vivo. In vivo studies showed that entrectinib is effective in alleviating bleomycin-induced pulmonary fibrosis. In vitro studies demonstrated that entrectinib dose-dependently inhibits TGF-ß1/non-Smad signaling and attenuates TGF-ß1-induced fibroblast activation and epithelial-mesenchymal transition (EMT). In conclusion, entrectinib blocks TGF-ß1-induced lung fibroblast activation and EMT and then attenuates bleomycin-induced pulmonary fibrosis in mice.


Assuntos
Bleomicina , Fibrose Pulmonar Idiopática , Idoso , Camundongos , Humanos , Animais , Bleomicina/efeitos adversos , Fator de Crescimento Transformador beta1/metabolismo , Matriz Extracelular , Transdução de Sinais , Transição Epitelial-Mesenquimal , Fibrose Pulmonar Idiopática/metabolismo , Pulmão/patologia , Fibroblastos , Camundongos Endogâmicos C57BL
3.
Environ Sci Technol ; 56(18): 13066-13075, 2022 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-36053113

RESUMO

The interfacial interaction between pollutants and organisms is a critical process in controlling the environmental fates of pollutants; however, in situ assay of the interaction is still a great challenge. Here, in situ determination of dissociation constants (Kd) for ZnO nanoparticles (ZnO NPs) from live algal cells disturbed by different-charged surfactants was established using microscale thermophoresis (MST). Moreover, in situ measurement of the adhesion force between the ZnO NPs probe and live single cell was performed using an atomic force microscope (AFM). Results showed that the cationic cetyltrimethylammonium chloride (CTAC) and anionic sodium dodecylbenzenesulfonate (SDBS) increased but nonionic Triton X-100 (TX-100) decreased the adhesion of ZnO NPs on cells. However, the force signature exhibited a smooth single retracted peak at short distances in the SDBS- and TX-100-treated groups, distinguished from the "see-saw" pattern peak in the CTAC-treated groups. The extended Derjaguin-Landau-Verway-Overbeek (XDLVO) calculation further confirmed that SDBS and TX-100 mainly disturbed the short-range hydration on the NP-cell interface, while CTAC reduced the long-range electrostatic repulsion. Furthermore, an excellent linear correlation between Zn bioaccumulation and two parameters (Kd and adhesion force) indicated that NP-cell interfacial interactions affected Zn bioaccumulation. Thus, in situ assay provides a quantitative basis for the pollutant-organism interfacial interaction to evaluate the environmental fate and ecological risk of pollutants.


Assuntos
Poluentes Ambientais , Óxido de Zinco , Cetrimônio , Octoxinol , Polietilenoglicóis , Tensoativos
4.
Sheng Li Xue Bao ; 74(1): 110-116, 2022 Feb 25.
Artigo em Chinês | MEDLINE | ID: mdl-35199131

RESUMO

Hypertension is one of the strongest risk factors for cardiovascular diseases, cerebral stroke, and kidney failure. Lifestyle and nutrition are important factors that modulate blood pressure. Hypertension can be controlled by increasing physical activity, decreasing alcohol and sodium intake, and stopping tobacco smoking. Chronic kidney disease patients often have increased blood pressure, which indicates that kidney is one of the major organs responsible for blood pressure homeostasis. The decrease of renal sodium reabsorption and increase of diuresis induced by high potassium intake is critical for the blood pressure reduction. The beneficial effect of a high potassium diet on hypertension could be explained by decreased salt reabsorption by sodium-chloride cotransporter (NCC) in the distal convoluted tubule (DCT). In DCT cells, NCC activity is controlled by with-no-lysine kinases (WNKs) and its down-stream target kinases, Ste20-related proline-alanine-rich kinase (SPAK) and oxidative stress-responsive 1 (OSR1). The kinase activity of WNKs is inhibited by intracellular chloride ([Cl-]i) and WNK4 is known to be the major WNK positively regulating NCC. Based on our previous studies, high potassium intake reduces the basolateral potassium conductance, decreases the negativity of DCT basolateral membrane (depolarization), and increases [Cl-]i. High [Cl-]i inhibits WNK4-SPAK/OSR1 pathway, and thereby decreases NCC phosphorylation. In this review, we discuss the role of DCT in the blood pressure regulation by dietary potassium intake, which is the mechanism that has been best dissected so far.


Assuntos
Túbulos Renais Distais , Proteínas Serina-Treonina Quinases , Pressão Sanguínea , Dieta , Humanos , Rim/metabolismo , Túbulos Renais Distais/metabolismo , Fosforilação , Potássio/metabolismo , Potássio/farmacologia , Membro 3 da Família 12 de Carreador de Soluto/metabolismo
5.
Am J Physiol Renal Physiol ; 319(3): F414-F422, 2020 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-32715760

RESUMO

We used patch-clamp and Western blot analysis to test whether PGF2α stimulates the basolateral 10-pS Cl- channel and thiazide-sensitive Na+-Cl- cotransporter (NCC) in the distal convoluted tubule (DCT) via a prostaglandin F receptor (FP-R). Single channel and whole cell recordings demonstrated that PGF2α stimulated the 10-pS Cl- channel in the DCT. The stimulatory effect of PGF2α on the Cl- channel was mimicked by a FP-R agonist, latanoprost, but was abrogated by blocking FP-R with AL8810. Also, the effect of PGF2α on the Cl- channel in the DCT was recapitulated by stimulating PKC but was blocked by inhibiting PKC. Furthermore, inhibition of p38 MAPK but not ERK blocked the effect of PGF2α on the 10-pS Cl- channel. Inhibition of NADPH oxidase also abrogated the stimulatory effect of PGF2α on the 10-pS Cl- channel, while the addition of 10 µM H2O2 mimicked the stimulatory effect of PGF2α on the 10-pS Cl- channel. Moreover, superoxide-related species may mediate the stimulatory effect of PGF2α on the 10-pS Cl- channel because the stimulatory effect of PGF2α and H2O2 was not additive. Western blot analysis showed that infusion of PGF2α in vivo not only increased the expression of FP-R but also increased the expression of total NCC and phosphorylated NCC. We conclude that PGF2α stimulates the basolateral 10-pS Cl- channel in the DCT by activating FP-R through PKC/p38 MAPK and NADPH oxidase-dependent pathways. The stimulatory effects of PGF2α on the Cl- channel and NCC may contribute to PGF2α-induced increases in NaCl reabsorption in the DCT.


Assuntos
Proteínas de Transporte de Ânions/metabolismo , Canais de Cloreto/metabolismo , Dinoprosta/farmacologia , Regulação da Expressão Gênica/efeitos dos fármacos , Túbulos Renais Distais/metabolismo , Receptores de Droga/metabolismo , Simportadores de Cloreto de Sódio/metabolismo , Animais , Proteínas de Transporte de Ânions/genética , Canais de Cloreto/genética , Feminino , Túbulos Renais Distais/efeitos dos fármacos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Ocitócicos/farmacologia , Técnicas de Patch-Clamp , Proteína Quinase C/genética , Proteína Quinase C/metabolismo , Receptores de Droga/genética , Simportadores de Cloreto de Sódio/genética , Proteínas Quinases p38 Ativadas por Mitógeno/genética , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
6.
Hypertension ; 75(2): 439-448, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31865783

RESUMO

The inhibition of Type II angiotensin II receptor (AT2R) or BK2R (bradykinin type II receptor) stimulates basolateral Kir4.1/Kir5.1 in the distal convoluted tubule (DCT) and activates thiazide-sensitive NCC (Na-Cl cotransporter). The aim of the present study is to examine the role of AT2R and BK2R in mediating the effect of HK (high dietary K+) intake on the basolateral K+ channels, NCC, and renal K+ excretion. Feeding mice (male and female) with HK diet for overnight significantly decreased the basolateral K+ conductance, depolarized the DCT membrane, diminished the expression of pNCC (phosphorylated NCC) and tNCC (total NCC), and decreased thiazide-sensitive natriuresis. Overnight HK intake also increased the expression of cleaved ENaC-α and -γ subunits but had no effect on NKCC2 expression. Pretreatment of the mice (male and female) with PD123319 and HOE140 stimulated the expression of tNCC and pNCC, augmented hydrochlorothiazide-induced natriuresis, and increased the negativity of the DCT membrane. The deletion of Kir4.1 not only decreased the NCC activity but also abolished the stimulatory effect of PD123319 and HOE140 perfusion on NCC activity. Moreover, the effect of overnight HK loading on Kir4.1/Kir5.1 in the DCT and NCC expression/activity was compromised in the mice treated with AT2R/BK2R antagonists. Renal clearance study showed that inhibition of AT2R and BK2R impairs renal K+ excretion in response to overnight HK loading, and the mice pretreated with PD123319 and HOE140 were hyperkalemic during HK intake. We conclude that synergistic activation of AT2R and BK2R is required for the effect of overnight HK diet on Kir4.1/Kir5.1 in the DCT and NCC activity.


Assuntos
Hiperpotassemia/metabolismo , Túbulos Renais Distais/metabolismo , Potássio/metabolismo , Receptor B2 da Bradicinina/metabolismo , Receptores de Angiotensina/metabolismo , Animais , Transporte Biológico , Modelos Animais de Doenças , Feminino , Hiperpotassemia/patologia , Immunoblotting , Túbulos Renais Distais/patologia , Masculino , Potenciais da Membrana , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Receptor B2 da Bradicinina/efeitos dos fármacos , Receptores de Angiotensina/efeitos dos fármacos
7.
Hypertension ; 73(1): 112-120, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30571558

RESUMO

The stimulation of ß-adrenergic receptor increases thiazide-sensitive NaCl cotransporter (NCC), an effect contributing to salt-sensitive hypertension by sympathetic stimulation. We now test whether the stimulation of ß-adrenergic receptor-induced activation of NCC is achieved through activating basolateral Kir4.1 in the distal convoluted tubule (DCT). Application of norepinephrine increased the basolateral 40 pS K+ channel (Kir4.1/Kir5.1 heterotetramer) in the DCT. The stimulatory effect of norepinephrine on the K+ channel was mimicked by cAMP analogue but abolished by inhibiting PKA (protein kinase A). Also, the effect of norepinephrine on the K+ channel in the DCT was recapitulated by isoproterenol but not by α-adrenergic agonist and blocked by propranolol, suggesting that norepinephrine effect on the K+ channel was mediated by ß-adrenergic receptor. The whole-cell recording shows that norepinephrine and isoproterenol increased DCT K+ currents and shifted the K+ current ( IK) reversal potential to negative range (hyperpolarization). Continuous norepinephrine perfusion (7 days) increased DCT K+ currents, hyperpolarized IK reversal potential, and increased the expression of total NCC/phosphorylated NCC, but it had no significant effect on the expression of NKCC2 (type 2 Na-Cl-K cotransporter) and ENaC-α (epithelial Na channel-α subunit). Renal clearance study demonstrated that norepinephrine perfusion augmented thiazide-induced urinary Na+ excretion only in wild-type but not in kidney-specific Kir4.1 knockout mice, suggesting that Kir4.1 is required for mediating the effect of norepinephrine on NCC. However, norepinephrine perfusion did not affect urinary K+ excretion. We conclude that the stimulation of ß-adrenergic receptor activates the basolateral Kir4.1 in the DCT and that the activation of Kir4.1 is required for norepinephrine-induced stimulation of NCC.


Assuntos
Transporte de Íons , Isoproterenol/farmacologia , Canais de Potássio Corretores do Fluxo de Internalização/metabolismo , Propranolol/farmacologia , Receptores Adrenérgicos beta/metabolismo , Membro 1 da Família 12 de Carreador de Soluto/metabolismo , Membro 3 da Família 12 de Carreador de Soluto/metabolismo , Agonistas Adrenérgicos beta/farmacologia , Antagonistas Adrenérgicos beta/farmacologia , Animais , Transporte de Íons/efeitos dos fármacos , Transporte de Íons/fisiologia , Túbulos Renais Distais/efeitos dos fármacos , Túbulos Renais Distais/metabolismo , Camundongos , Camundongos Knockout , Norepinefrina/metabolismo , Canal Kir5.1
8.
Sheng Li Xue Bao ; 70(6): 600-606, 2018 Dec 25.
Artigo em Chinês | MEDLINE | ID: mdl-30560268

RESUMO

Basolateral inwardly-rectifying K+ channels (Kir) play an important role in the control of resting membrane potential and transepithelial voltage, thereby modulating water and electrolyte transport in the distal part of nephron. Kir4.1 and Kir4.1/Kir5.1 heterotetramer are abundantly expressed in the basolateral membrane of late thick ascending limb (TAL), distal convoluted tubule (DCT), connecting tubule (CNT) and cortical collecting duct (CCD). Loss-of-function mutations in KCNJ10 cause EAST/SeSAME syndrome in humans associated with epilepsy, ataxia, sensorineural deafness and water-electrolyte metabolism imbalance, which is characterized by salt wasting, hypomagnesaemia, hypokalaemia and metabolic alkalosis. In contrast, mice lacking Kir5.1 have severe renal phenotype apart from hypokalaemia such as high chlorine metabolic acidosis and hypercalcinuria. The genetic knockout or functional inhibition of Kir4.1 suppresses Na-Cl cotransporter (NCC) expression and activity in the DCT. However, the downregulation of Kir4.1 increases epithelial Na+ channel (ENaC) expression in the collecting duct. Recently, factors regulating expression and activity of Kir4.1 and Kir4.1/Kir5.1 were identified, such as cell acidification, dopamine, insulin and insulin-like growth factor-1. The involved mechanisms include PKC, PI3K, Src family protein tyrosine kinases and WNK-SPAK signal transduction pathways. Here we review the progress of renal tubule basolateral Kir, and mainly discuss the function and regulation of Kir4.1 and Kir4.1/Kir5.1.


Assuntos
Túbulos Renais/metabolismo , Canais de Potássio Corretores do Fluxo de Internalização/metabolismo , Animais , Membrana Celular , Humanos , Túbulos Renais Distais , Potenciais da Membrana , Camundongos , Canal Kir5.1
9.
Hypertension ; 72(2): 361-369, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29915013

RESUMO

Stimulation of BK2R (bradykinin [BK] B2 receptor) has been shown to increase renal Na+ excretion. The aim of the present study is to explore the role of BK2R in regulating Kir4.1 and NCC (NaCl cotransporter) in the distal convoluted tubule (DCT). Immunohistochemical studies demonstrated that BK2R was highly expressed in both apical and lateral membrane of Kir4.1-positive tubules, such as DCT. Patch-clamp experiments demonstrated that BK inhibited the basolateral 40-pS K+ channel (a Kir4.1/5.1 heterotetramer) in the DCT, and this effect was blocked by BK2R antagonist but not by BK1R (BK B1 receptor) antagonist. Whole-cell recordings also demonstrated that BK decreased the basolateral K+ conductance of the DCT and depolarized the membrane. Renal clearance experiments showed that BK increased urinary Na+ and K+ excretion. However, the BK-induced natriuretic effect was completely abolished in KS-Kir4.1 KO (kidney-specific conditional Kir4.1 knockout) mice, suggesting that Kir4.1 activity is required for BK-induced natriuresis. The continuous infusion of BK with osmotic pump for 3 days decreased the basolateral K+ conductance and the negativity of the DCT membrane. Western blot showed that infusion of BK decreased the expression of total NCC and phosphorylated NCC. Renal clearance experiments demonstrated that thiazide-induced natriuresis was blunted in the mice receiving BK infusion, suggesting that BK inhibited NCC function. Consequently, mice receiving BK infusion for 3 days were hypokalemic. We conclude that stimulation of BK2R inhibits NCC activity, increases urinary K+ excretion, and causes mice hypokalemia and that Kir4.1 is required for BK2R-mediated stimulation of urinary Na+ and K+ excretion.


Assuntos
Bradicinina/farmacologia , Túbulos Renais Distais/metabolismo , Natriurese/fisiologia , Canais de Potássio Corretores do Fluxo de Internalização/metabolismo , Sódio/urina , Membro 3 da Família 12 de Carreador de Soluto/metabolismo , Animais , Feminino , Imuno-Histoquímica , Transporte de Íons , Túbulos Renais Distais/efeitos dos fármacos , Masculino , Potenciais da Membrana , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Modelos Animais , Técnicas de Patch-Clamp
10.
Hypertension ; 71(4): 622-630, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29483225

RESUMO

AT2R (AngII [angiotensin II] type 2 receptor) is expressed in the distal nephrons. The aim of the present study is to examine whether AT2R regulates NCC (Na-Cl cotransporter) and Kir4.1 of the distal convoluted tubule. AngII inhibited the basolateral 40 pS K channel (a Kir4.1/5.1 heterotetramer) in the distal convoluted tubule treated with losartan but not with PD123319. AT2R agonist also inhibits the K channel, indicating that AT2R was involved in tonic regulation of Kir4.1. The infusion of PD123319 stimulated the expression of tNCC (total NCC) and pNCC (phosphorylated NCC; Thr53) by a time-dependent way with the peak at 4 days. PD123319 treatment (4 days) stimulated the basolateral 40 pS K channel activity, augmented the basolateral K conductance, and increased the negativity of distal convoluted tubule membrane. The stimulation of Kir4.1 was essential for PD123319-induced increase in NCC because inhibiting AT2R increased the expression of tNCC and pNCC only in wild-type but not in the kidney-specific Kir4.1 knockout mice. Renal clearance study showed that thiazide-induced natriuretic effect was larger in PD123319-treated mice for 4 days than untreated mice. However, this effect was absent in kidney-specific Kir4.1 knockout mice which were also Na wasting under basal conditions. Finally, application of AT2R antagonist decreased the renal ability of K excretion and caused hyperkalemia in wild-type but not in kidney-specific Kir4.1 knockout mice. We conclude that AT2R-dependent regulation of NCC requires Kir4.1 in the distal convoluted tubule and that AT2R plays a role in stimulating K excretion by inhibiting Kir4.1 and NCC.


Assuntos
Imidazóis/farmacologia , Túbulos Renais Distais , Losartan/farmacologia , Canais de Potássio Corretores do Fluxo de Internalização/metabolismo , Piridinas/farmacologia , Inibidores de Simportadores de Cloreto de Sódio/farmacologia , Membro 3 da Família 12 de Carreador de Soluto/metabolismo , Angiotensina II/metabolismo , Bloqueadores do Receptor Tipo 1 de Angiotensina II/farmacologia , Bloqueadores do Receptor Tipo 2 de Angiotensina II/farmacologia , Animais , Transporte de Íons/efeitos dos fármacos , Túbulos Renais Distais/efeitos dos fármacos , Túbulos Renais Distais/metabolismo , Camundongos , Camundongos Knockout , Receptor Tipo 2 de Angiotensina/metabolismo , Simportadores de Cloreto de Sódio-Potássio/metabolismo , Desequilíbrio Hidroeletrolítico/metabolismo
11.
Mol Med Rep ; 14(5): 4391-4398, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27748841

RESUMO

Adenosine is a molecule produced by several organs within the body, including the kidneys, where it acts as an autoregulatory factor. It mediates ion transport in several nephron segments, including the proximal tubule and the thick ascending limb (TAL). Ion transport is dictated in part by anionic chloride channels, which regulate crucial kidney functions, including the reabsorption of Na+ and Cl­, urine concentration, and establishing and maintaining the corticomedullary osmotic gradient. The present study investigated the effects of adenosine on the mRNA expression of chloride voltage­gated channel Kb (CLCNKB), a candidate gene involved in hypertension, which encodes for the ClC­Kb channel. Medullary thick ascending limb (mTAL) tubules were isolated from the rat kidney, and primary cultures of mTAL cells from the mTAL tubules were established. The cells were treated with adenosine and the mRNA expression of CLCNKB was detected by reverse transcription­quantitative polymerase chain reaction. The cells were also treated with pathways inhibitors (H8 and AACOCF3), and the protein expression of cyclic adenosine 3',5'­monophosphate (cAMP)­protein kinase A (PKA) and phospholipase A2 (PLA2) by were analyzed by western blotting. The findings indicated that adenosine increased the mRNA expression of CLCNKB in primary cultures of medullary TAL cells, and this stimulatory effect was regulated by the cAMP­PKA and PLA2­arachidonic acid (AA) pathways. The present study showed that adenosine affected the mRNA expression of CLCNKB, initially through the cAMP­PKA pathway and then the PLA2­AA pathway.


Assuntos
Adenosina/administração & dosagem , Proteínas de Transporte de Ânions/biossíntese , Canais de Cloreto/biossíntese , Túbulos Renais Proximais/metabolismo , Alça do Néfron/metabolismo , Adenosina/metabolismo , Animais , Proteínas de Transporte de Ânions/genética , Ácido Araquidônico/metabolismo , Ácidos Araquidônicos/administração & dosagem , Canais de Cloreto/genética , AMP Cíclico/metabolismo , Proteínas Quinases Dependentes de AMP Cíclico/antagonistas & inibidores , Proteínas Quinases Dependentes de AMP Cíclico/biossíntese , Proteínas Quinases Dependentes de AMP Cíclico/genética , Regulação da Expressão Gênica/efeitos dos fármacos , Isoquinolinas/administração & dosagem , Túbulos Renais Proximais/efeitos dos fármacos , Alça do Néfron/efeitos dos fármacos , Néfrons/efeitos dos fármacos , Néfrons/metabolismo , Fosfolipases A2/biossíntese , Fosfolipases A2/genética , Cultura Primária de Células , RNA Mensageiro/biossíntese , Ratos , Transdução de Sinais/efeitos dos fármacos
12.
Am J Physiol Renal Physiol ; 310(10): F985-93, 2016 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-26887833

RESUMO

Kcnj10 encodes the inwardly rectifying K(+) channel 4.1 (Kir4.1) and is expressed in the basolateral membrane of late thick ascending limb, distal convoluted tubule (DCT), connecting tubule (CNT), and cortical collecting duct (CCD). In the present study, we perform experiments in postneonatal day 9 Kcnj10(-/-) or wild-type mice to examine the role of Kir.4.1 in contributing to the basolateral K(+) conductance in the CNT and CCD, and to investigate whether the disruption of Kir4.1 upregulates the expression of the epithelial Na(+) channel (ENaC). Immunostaining shows that Kir4.1 is expressed in the basolateral membrane of CNT and CCD. Patch-clamp studies detect three types of K(+) channels (23, 40, and 60 pS) in the basolateral membrane of late CNT and initial CCD in wild-type (WT) mice. However, only 23- and 60-pS K(+) channels but not the 40-pS K(+) channel were detected in Kcnj10(-/-) mice, suggesting that Kir.4.1 is a key component of the 40-pS K(+) channel in the CNT/CCD. Moreover, the depletion of Kir.4.1 did not increase the probability of finding the 23- and 60-pS K(+) channel in the CNT/CCD. We next used the perforated whole cell recording to measure the K(+) reversal voltage in the CNT/CCD as an index of cell membrane potential. Under control conditions, the K(+) reversal potential was -69 mV in WT mice and -61 mV in Kcnj10(-/-) mice, suggesting that Kir4.1 partially participates in generating membrane potential in the CNT/CCD. Western blotting and immunostaining showed that the expression of ENaCß and ENaCγ subunits from a renal medulla section of Kcnj10(-/-) mice was significantly increased compared with that of WT mice. Also, the disruption of Kir4.1 increased aquaporin 2 expression. We conclude that Kir4.1 is expressed in the CNT and CCD and partially participates in generating the cell membrane potential. Also, increased ENaC expression in medullary CD of Kcnj10(-/-) mice is a compensatory action in response to the impaired Na(+) transport in the DCT.


Assuntos
Canais Epiteliais de Sódio/metabolismo , Túbulos Renais Coletores/metabolismo , Canais de Potássio Corretores do Fluxo de Internalização/metabolismo , Animais , Potenciais da Membrana , Camundongos , Regulação para Cima
13.
Biochim Biophys Acta ; 1852(11): 2554-62, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26319417

RESUMO

The renal phenotype of EAST syndrome, a disease caused by the loss-of-function-mutations of Kcnj10 (Kir4.1), is a reminiscence of Gitelman's syndrome characterized by the defective function in the distal convoluted tubule (DCT). The aim of the present study is to test whether antidiuretic hormone (vasopressin)-induced stimulation of the Na(+)-activated 80-150pS K(+) channel is responsible for compensating the lost function of Kcnj10 in the thick ascending limb (TAL) of subjects with EAST syndrome. Immunostaining and western blot showed that the expression of aquaporin 2 (AQP2) was significantly higher in Kcnj10(-/-) mice than those of WT littermates, suggesting that the disruption of Kcnj10 stimulates vasopressin response in the kidney. The role of vasopressin in stimulating the basolateral K(+) conductance of the TAL was strongly indicated by the finding that the application of arginine-vasopressin (AVP) hyperpolarized the membrane in the TAL of Kcnj10(-/-) mice. Application of AVP significantly stimulated the 80-150pS K(+) channel in the TAL and this effect was blocked by tolvaptan (V2 receptor antagonist) or by inhibiting PKA. Moreover, the water restriction for 24h significantly increased the probability of finding the 80-150pS K(+) channel and the K(+) channel open probability in the TAL. The application of a membrane permeable cAMP analog also mimicked the effect of AVP and activated this K(+) channel, suggesting that cAMP-PKA pathway stimulates the 80-150pS K(+) channels. The role of the basolateral K(+) conductance in maintaining transcellular Cl(-) transport is further suggested by the finding that the inhibition of basolateral K(+) channels significantly diminished the AVP-induced stimulation of the basolateral 10pS Cl(-) channels. We conclude that vasopressin stimulates the 80-150pS K(+) channel in the TAL via a cAMP-dependent mechanism. The vasopressin-induced stimulation of K(+) channels is responsible for compensating lost function of Kcnj10 thereby rescuing the basolateral K(+) conductance which is essential for the transport function in the TAL.

14.
Am J Physiol Renal Physiol ; 306(5): F509-16, 2014 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-24370594

RESUMO

We used the patch-clamp technique to examine the effect of angiotensin II (ANG II) on the basolateral K channels in the thick ascending limb (TAL) of the rat kidney. Application of ANG II increased the channel activity and the current amplitude of the basolateral 50-pS K channel. The stimulatory effect of ANG II on the K channels was completely abolished by losartan, an inhibitor of type 1 angiotensin receptor (AT1R), but not by PD123319, an AT2R antagonist. Moreover, inhibition of phospholipase C (PLC) and protein kinase C (PKC) also abrogated the stimulatory effect of ANG II on the basolateral K channels in the TAL. This suggests that the stimulatory effect of ANG II on the K channels was induced by activating PLC and PKC pathways. Western blotting demonstrated that ANG II increased the phosphorylation of c-Src at tyrosine residue 416, an indication of c-Src activation. This effect was mimicked by PKC stimulator but abolished by calphostin C. Moreover, inhibition of NADPH oxidase (NOX) also blocked the effect of ANG II on c-Src tyrosine phosphorylation. The role of Src-family protein tyrosine kinase (SFK) in mediating the effect of ANG II on the basolateral K channel was further suggested by the experiments in which inhibition of SFK abrogated the stimulatory effect of ANG II on the basolateral 50-pS K channel. We conclude that ANG II increases basolateral 50-pS K channel activity via AT1R and that activation of AT1R stimulates SFK by a PLC-PKC-NOX-dependent mechanism.


Assuntos
Angiotensina II/farmacologia , Extremidades/fisiopatologia , Canais de Potássio/metabolismo , Angiotensina II/metabolismo , Animais , NADPH Oxidases/metabolismo , Técnicas de Patch-Clamp/métodos , Proteína Quinase C/metabolismo , Ratos , Ratos Sprague-Dawley , Receptores de Angiotensina/metabolismo
15.
Hypertension ; 61(6): 1211-7, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23569086

RESUMO

Chloride channels in the basolateral membrane play a key role in Cl absorption in the thick ascending limb (TAL). The patch-clamp experiments were performed to test whether angiotensin II (AngII) increases Cl absorption in the TAL by stimulating the basolateral 10-pS Cl channels. AngII (1-100 nmol/L) stimulated the 10-pS Cl channel in the TAL, an effect that was blocked by losartan (angiotension AT1 receptor [AT1R] antagonist) but not by PD123319 (angiotension AT2 receptor [AT2R] antagonist). Inhibition of phospholipase C or protein kinase C also abolished the stimulatory effect of AngII on Cl channels. Moreover, stimulation of protein kinase C with phorbol-12-myristate-13-acetate mimicked the effect of AngII and increased Cl channel activity. However, the stimulatory effect of AngII on Cl channels was absent in the TAL pretreated with diphenyleneiodonium sulfate, an inhibitor of nicotinamide adenine dinucleotide phosphate (NADPH) oxidase. Moreover, treatment of the TAL with diphenyleneiodonium sulfate also blocked the effect of phorbol-12-myristate-13-acetate on the 10-pS Cl channel. Western blotting demonstrated that incubation of isolated TAL with AngII increased phosphorylation of p47(phox) at Ser(304), suggesting that AngII stimulates the basolateral Cl channels by increasing NADPH oxidase-dependent superoxide generation. This notion was also supported by the observation that H2O2 significantly increased 10-pS Cl channel activity in the TAL. We conclude that stimulation of AT1R increased the basolateral Cl channels by activating the protein kinase C-dependent NADPH oxidase pathway. The stimulatory effect of AngII on the basolateral Cl channel may contribute to AngII-induced increases in NaCl reabsorption in the TAL and AngII-infuse-induced hypertension.


Assuntos
Angiotensina II/toxicidade , Canais de Cloreto/metabolismo , Hipertensão/metabolismo , Alça do Néfron/metabolismo , Animais , Western Blotting , Células Cultivadas , Canais de Cloreto/efeitos dos fármacos , Modelos Animais de Doenças , Feminino , Hipertensão/induzido quimicamente , Hipertensão/patologia , Alça do Néfron/efeitos dos fármacos , Alça do Néfron/patologia , Masculino , Técnicas de Patch-Clamp , Ratos , Ratos Sprague-Dawley
16.
Biochim Biophys Acta ; 1823(7): 1163-9, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22575459

RESUMO

The aim of the present study is to test the hypothesis that insulin-like-growth factor-1 (IGF-1) plays a role in the regulation of basolateral Cl channels in the thick ascending limb (TAL). The patch-clamp experiments demonstrated that application of IGF-I or insulin inhibited the basolateral 10-pS Cl channels. However, the concentration of insulin required for the inhibition of the Cl channels by 50% (K(1/2)) was ten times higher than those of IGF-1. The inhibitory effect of IGF-I on the 10-pS Cl channels was blocked by suppressing protein tyrosine kinase or by blocking phosphoinositide 3-kinase (PI3K). In contrast, inhibition of phospholipase C (PLC) failed to abolish the inhibitory effect of IGF-1 on the Cl channels in the TAL. Western blot analysis demonstrated that IGF-1 significantly increased the phosphorylation of phospholipid-dependent kinase (PDK) at serine residue 241 (Ser(241)) and AKT at Ser(473) in the isolated medullary TAL. Moreover, inhibition of PI3K with LY294002 abolished the effect of IGF-1 on the phosphorylation of PDK and AKT. The notion that the effect of IGF-1 on the 10-pS Cl channels was induced by stimulation of PDK-AKT-mTOR pathway was further suggested by the finding that rapamycin completely abolished the effect of IGF-1 on the 10-pS Cl channels in the TAL. We conclude that IGF-1 inhibits the basolateral Cl channels by activating PI3K-AKT-mTOR pathways. The inhibitory effect of IGF-1 on the Cl channels may play a role in ameliorating the ischemia-induced renal injury through IGF-1 administration.


Assuntos
Canais de Cloreto/metabolismo , Fator de Crescimento Insulin-Like I/farmacologia , Ativação do Canal Iônico/efeitos dos fármacos , Alça do Néfron/efeitos dos fármacos , Alça do Néfron/fisiologia , Animais , Western Blotting , Cromonas/farmacologia , Feminino , Insulina/farmacologia , Masculino , Modelos Biológicos , Morfolinas/farmacologia , Ratos , Ratos Sprague-Dawley
17.
Biochim Biophys Acta ; 1823(2): 273-81, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22050992

RESUMO

We used the patch-clamp technique to study the effect of changing the external Ca2+ on the basolateral 50-pS K channel in the thick ascending limb (TAL) of rat kidney. Increasing the external Ca2+ concentration from 1 mM to 2 or 3 mM inhibited the basolateral 50-pS K channels while decreasing external Ca2+ to 10 µM increased the 50-pS K channel activity. The effect of the external Ca2+ on the 50-pS K channels was observed only in cell-attached patches but not in excised patches. Moreover, the inhibitory effect of increasing external Ca2+ on the 50-pS K channels was absent in the presence of NPS2390, an antagonist of Ca2+-sensing receptor (CaSR), suggesting that the inhibitory effect of the external Ca2+ was the result of stimulation of the CaSR. Application of the membrane-permeable cAMP analog increased the 50-pS K channel activity but did not block the effect of raising the external Ca2+ on the K channels. Neither inhibition of phospholipase A2 (PLA2) nor suppression of cytochrome P450-ω-hydroxylation-dependent metabolism of arachidonic acid was able to abolish the effect of raising the external Ca2+ on the 50-pS K channels. In contrast, inhibition of phospholipase C (PLC) or blocking protein kinase C (PKC) completely abolished the inhibition of the basolateral 50-pS K channels induced by raising the external Ca2+. We conclude that the external Ca2+ concentration plays an important role in the regulation of the basolateral K channel activity in the TAL and that the effect of the external Ca2+ is mediated by the CaSR which stimulates PLC-PKC pathways. The regulation of the basolateral K channels by the CaSR may be the mechanism by which extracellular Ca2+ level modulates the reabsorption of divalent cations.


Assuntos
Cálcio/metabolismo , Rim/anatomia & histologia , Rim/metabolismo , Canais de Potássio/metabolismo , Receptores de Detecção de Cálcio/metabolismo , Adamantano/análogos & derivados , Adamantano/metabolismo , Animais , Ácidos Araquidônicos/metabolismo , Permeabilidade da Membrana Celular/fisiologia , Estrenos/metabolismo , Feminino , Masculino , Técnicas de Patch-Clamp , Inibidores de Fosfodiesterase/metabolismo , Bloqueadores dos Canais de Potássio/metabolismo , Pirrolidinonas/metabolismo , Quinoxalinas/metabolismo , Ratos , Ratos Sprague-Dawley , Receptores de Detecção de Cálcio/antagonistas & inibidores
18.
Am J Physiol Renal Physiol ; 300(4): F906-13, 2011 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-21209003

RESUMO

The basolateral 50-pS K channels are stimulated by a cAMP-dependent pathway and inhibited by cytochrome P-450-omega-hydroxylase-dependent metabolism of arachidonic acid (AA) in the rat thick ascending limb (TAL). We now used the patch-clamp technique to examine whether stimulation of adenosine A(2a) receptor modulates the inhibitory effect of AA on the basolateral 50-pS K channels in the medullary TAL. Stimulation of adenosine A(2a) receptor with CGS-21680 or inhibition of phospholipase A2 (PLA2) with AACOCF3 increased the 50-pS K channel activity in the TAL. Western blot demonstrated that application of CGS-21680 decreased the phosphorylation of PLA(2) at serine residue 505, an indication of inhibiting PLA2 activity. In the presence of CGS-21680, inhibition of PLA2 had no further effect on the basolateral 50-pS K channels. The possibility that CGS-21680-induced stimulation of the basolateral 50-pS K channels was partially achieved by inhibition of PLA2 in the TAL was also supported by the observation that CGS-21680 had no additional effect in the presence of AACOCF3. Moreover, stimulation of adenosine A(2a) receptor with CGS-21680 also abolished the inhibitory effect of AA and 20-hydroxyeicosatetraenoic acid (20-HETE) on the 50-pS K channels. The effect of CGS-21680 on AA and 20-HETE-mediated inhibition of the 50-pS K channels was mediated by cAMP because application of membrane-permeable cAMP analog, dibutyryl-cAMP, not only increased the 50-pS K channel activity but also abolished the inhibitory effect of AA and 20-HETE. We conclude that stimulation of adenosine A(2a) receptor increased the 50-pS K channel activity in the TAL, an effect that is achieved by suppression of PLA2 activity and 20-HETE-induced inhibition.


Assuntos
Ácido Araquidônico/farmacologia , Alça do Néfron/metabolismo , Canais de Potássio/metabolismo , Receptor A2A de Adenosina/metabolismo , Adenosina/análogos & derivados , Adenosina/farmacologia , Agonistas do Receptor A2 de Adenosina/farmacologia , Animais , Ácidos Araquidônicos/farmacologia , Western Blotting , Inibidores Enzimáticos/farmacologia , Feminino , Alça do Néfron/efeitos dos fármacos , Masculino , Potenciais da Membrana/efeitos dos fármacos , Técnicas de Patch-Clamp , Fenetilaminas/farmacologia , Ratos , Ratos Sprague-Dawley
19.
Mol Med ; 16(7-8): 322-32, 2010.
Artigo em Inglês | MEDLINE | ID: mdl-20386871

RESUMO

ST-segment elevation is the major clinical criterion for committing patients with chest pain to have emergent coronary revascularizations; however, the mechanism responsible for ST-segment elevation is unknown. In a guinea pig model of ST-segment elevation acute myocardial infarction (AMI), local application of hirudin, a thrombin antagonist, significantly decreased AMI-induced ST-segment elevation in a dose-dependent manner. Hirudin-induced (5 antithrombin units [ATU]) decrease in ST elevation was reversed by 250 nmol/L thrombin receptor activator peptide (TRAP). TRAP (250 nmol/L [100 microL]) significantly induced ST-segment elevation in hearts without AMI. The TRAP effect was blocked by 4 mg/kg glibenclamide and 4 mg/kg HMR1098 and partially blocked by 3 mg/kg 5HD. Pinacidil (0.45 mg/kg) simulated the effect of TRAP (250 nmol/L [100 microL]) on hearts without AMI. Moreover, single-channel recordings showed that TRAP induced ATP-sensitive K+ channel (KATP channel) activity, and this effect was blocked by HMR1098 but not 5HD. Finally, TRAP significantly shortened the monophasic action potential (MAP) at 90% repolarization (MAP90) and epicardial MAP (EpiMAP) duration. These effects of TRAP were completely reversed by HMR1098 and partially reversed by 5HD. Thrombin and its receptor activation enhanced ST-segment elevation in an AMI model by activating the sarcolemmal KATP channel.


Assuntos
Eletrocardiografia/efeitos dos fármacos , Canais KATP/metabolismo , Infarto do Miocárdio/metabolismo , Receptores de Trombina/metabolismo , Trombina/metabolismo , Análise de Variância , Animais , Eletrocardiografia/métodos , Cobaias , Hirudinas/farmacologia , Masculino , Perfusão , Trombina/antagonistas & inibidores
20.
Kidney Int ; 76(8): 849-56, 2009 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-19641481

RESUMO

Metabolites of arachidonic acid influence sodium chloride (NaCl) transport in the thick ascending limb. Because a 10 pS Cl channel is the major type of chloride channel in the basolateral membrane of this nephron segment, we explored the effect of arachidonic acid on this channel in cell-attached patches. Addition of 5 micromol arachidonic acid significantly decreased channel activity (a product of channel number and open probability) while linoleic acid had no effect. To determine if this was mediated by acachidonic acid per se or by its metabolites, we measured channel activity in the presence of the cyclooxygenase inhibitor indomethacin, the selective lipoxygenase inhibitor nordihydroguaiaretic acid, and the cytochrome P-450 (CYP)-omega-hydroxylation inhibitor 17-octadecynoic acid. Neither cyclooxygenase nor lipoxygenase inhibition had an effect on basal chloride channel activity; further they failed to abolish the inhibitory effect of arachidonate on the 10 pS channel. However, inhibition of CYP-omega-hydroxylation completely abolished the effect of arachidonic acid. The similarity of the effects of 20-hydroxyeicosatetraenoic acid (20-HETE) and arachidonic acid suggests that the effect of arachidonic acid was mediated by CYP-omega-hydroxylation-dependent metabolites. We conclude that arachidonic acid inhibits the 10 pS chloride channel in the basolateral membrane of the medullary thick ascending limb, an effect mediated by the CYP-omega-hydroxylation-dependent metabolite 20-HETE.


Assuntos
Ácido Araquidônico/metabolismo , Canais de Cloreto/antagonistas & inibidores , Sistema Enzimático do Citocromo P-450/metabolismo , Ácidos Hidroxieicosatetraenoicos/metabolismo , Ativação do Canal Iônico , Alça do Néfron/enzimologia , Animais , Canais de Cloreto/metabolismo , Inibidores das Enzimas do Citocromo P-450 , Inibidores Enzimáticos/farmacologia , Ácidos Graxos Insaturados/farmacologia , Feminino , Hidroxilação , Técnicas In Vitro , Indometacina/farmacologia , Alça do Néfron/efeitos dos fármacos , Masculino , Masoprocol/farmacologia , Potenciais da Membrana , Técnicas de Patch-Clamp , Ratos , Ratos Sprague-Dawley , Cloreto de Sódio/metabolismo , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA