Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Environ Manage ; 346: 118985, 2023 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-37708680

RESUMO

Aspergillus niger is widely applied in the fermentation industry, but produce abundant mycelium residues every year. As a kind of solid waste, mycelium residues seriously affect the environment. How to manage and utilize this solid waste is a problem for the fermentation industry. It was reported that many kinds of biomass could be utilized to produce carbon materials, which would be further used to produce lithium-ion rechargeable batteries (LIBs). Here, porous biochar was prepared from A. niger mycelial residues and further used as an anode for LIBs. Since the A. niger mycelium contains abundant nitrogen (5.29%) from its chitosan-dominated cell wall, and silicon (9.63%) from perlite filter aid, respectively, the biochar presented an excellent cycle stability and rate performance when applied as the anode of LIBs. The conclusion of this research shows the wide application prospect of fungal fermentation residues as carbon precursors in energy storage devices. Meanwhile, this investigation provides an alternative management method for A. niger mycelium residues, with which the mycelium residues could be effectively recycled to avoid resource waste and environmental pollution.


Assuntos
Aspergillus niger , Asteraceae , Lítio , Fermentação , Resíduos Sólidos , Carbono , Eletrodos , Íons
2.
Biosens Bioelectron ; 101: 52-59, 2018 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-29040914

RESUMO

In this work, we demonstrated a nano-decorated porous impedance electrode sensor for efficient capture, rapid killing and ultrasensitive detection of bacteria. The multi-functional sensor was prepared by a facile sonochemical method via in situ deposition of antibacterial prickly Zn-CuO nanoparticles and graphene oxide (GO) nanosheets on a Ni porous electrode. Due to the surface burr-like nanostructures, the nano-decorated impedance sensor exhibited very good bacterial-capture efficiency (70 - 80% in 20min) even at a low concentration of 50 CFU mL-1, rapid antibacterial rate (100% killing in 30min) and high detection sensitivity (as low as 10 CFU mL-1). More importantly, the nano-decorated sensor has proven to be highly effective in quantitative detection of bacteria in a biological sample, for example, a rat blood sample spiked with E. coli. Despite the complexity of blood, the sensor still exhibited excellent detection precision within 30min at bacteria concentrations ranging from 10 - 105 CFU mL-1. The simplicity, rapidity, sensitivity, practicability and multifunctionality of this impedance sensor would greatly facilitate applications in portable medical devices for on-the-spot diagnosis and even the possibility for simultaneous therapy of diseases caused by bacterial infections.


Assuntos
Técnicas Biossensoriais/métodos , Cobre/química , Infecções por Escherichia coli/sangue , Escherichia coli/isolamento & purificação , Grafite/química , Nanoestruturas/química , Zinco/química , Animais , Técnicas Biossensoriais/instrumentação , Impedância Elétrica , Técnicas Eletroquímicas/instrumentação , Técnicas Eletroquímicas/métodos , Eletrodos , Infecções por Escherichia coli/microbiologia , Limite de Detecção , Nanoestruturas/ultraestrutura , Óxidos/química , Ratos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA