Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Huan Jing Ke Xue ; 43(9): 4888-4901, 2022 Sep 08.
Artigo em Chinês | MEDLINE | ID: mdl-36096629

RESUMO

As one of the large dosages of pharmaceutical and personal care products (PPCPs), acetaminophen is widely present in the water environment and presents potential environmental risks. Therefore, it is necessary to study the removal mechanism of acetaminophen from the environment. Based on the high-value conversion demand of agricultural straw resources in China, straw-derived biochar prepared by pyrolysis has a good application prospect for the sorption and purification of acetaminophen in water. However, the sorption process and mechanism of straw-derived biochar for acetaminophen remain unclear. Four types of straw (rice, wheat, maize, and bean straw) were chosen as raw materials, and straw-derived biochars were prepared through the pyrolysis method at 400℃ and 500℃. The batch sorption experiments were used to study the sorption of acetaminophen to different sources and different pyrolysis temperature biochars. The effect of humic acid and pH on the sorption process was also studied. The results showed that:based on the Freundlich and site energy distribution models, the sorption of acetaminophen on biochar at 500℃ biochar was significantly higher than that at 400℃ biochar (the sorption coefficient KF was 1.16-2.53 times higher), and 500℃ biochar had more high-energy sorption sites. For high-temperature pyrolysis biochar, the primary sorption mechanism was pore sorption and π-π effect; for low-temperature pyrolysis biochar, the primary sorption mechanism for removing acetaminophen was H-bonding. The presence of humic acid enhanced the sorption of acetaminophen, which was attributed to the strong interaction between the humic acid selected in the experiment and acetaminophen, thus promoting adsorption. The decrease in sorption capacity of biochar caused by the increasing pH was mainly attributed to the pore blockage resulting from the aggregation of acetaminophen molecules. The pore sorption and π-π interaction of acetaminophen on straw-derived biochar could be promoted by increasing pyrolysis temperature. These experiments on humic acid and pH show that straw-derived biochar is not affected by humic acid and has good sorption performance in a low pH environment.


Assuntos
Acetaminofen , Substâncias Húmicas , Carvão Vegetal/química , Água
2.
Ecotoxicol Environ Saf ; 225: 112807, 2021 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-34562787

RESUMO

Perfluorooctane sulphonate (PFOS), as a surfactant, is widely applied in the agricultural production activities and has become a potential menace to human health. The mechanism of its effect on the maturation of mammalian oocytes is unclear. This study explored the toxic effect of PFOS on mouse oocyte maturation in vitro. The results revealed that PFOS under a concentration of 600 µM could significantly reduce the polar body extrusion rate (PBE) of mouse oocytes and cause symmetrical cell division. Further experiments showed that PFOS resulted in the abnormal cytoskeleton of the oocytes, causing the abnormal spindles and misplaced chromosomes, as well as the impaired dynamics of actin. Moreover, PFOS exposure inhibited the process of oocyte meiosis, which reflected in the slower spindle migration and continuous activation of spindle assembly checkpoint (SAC), then ultimately increased the probability of aneuploidy. Most importantly, PFOS exposure reduced the quality of oocytes, specifically by disrupting the function of mitochondria, inducing cell oxidative stress, and triggering early apoptosis. Furthermore, the level of methylation of histones is additionally influenced. In summary, our findings showed that PFOS exposure interfered with the maturation of mouse oocytes through affecting cytoskeletal dynamics, meiotic progression, oocyte quality, and histone modifications.


Assuntos
Ácidos Alcanossulfônicos , Ácidos Alcanossulfônicos/metabolismo , Ácidos Alcanossulfônicos/toxicidade , Animais , Apoptose , Fluorocarbonos , Camundongos , Oócitos/metabolismo , Estresse Oxidativo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA