Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
2.
Neoplasma ; 70(4): 500-513, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37789776

RESUMO

Long noncoding RNAs (lncRNAs) play important roles in the progression of human cancer. It is reported that lncRNA plasmacytoma variant translocation 1 (PVT1) is involved in colorectal cancer (CRC), however, the underlying mechanism remains to be explored deeply, especially by in vivo models. In the present study, bioinformatics analysis showed that the expression level of PVT1 was upregulated in CRC tissues and highly associated with poor prognosis of CRC patients. In cultured CRC cells, knockdown of PVT1 inhibited cell proliferation and migration of CRC cells, while overexpression of PVT1 promoted the progression of CRC cells. In zebrafish xenografts, the silencing of PVT1 also suppressed the growth and metastasis of CRC cells. For mechanism studies, the binding relationships among PVT1, miR-24-3p, and Neuropilin 1 (NRP1) were predicted by starBase firstly. The luciferase reporter assays verified that PVT1 and NRP1 could bind with miR-24-3p directly. Further studies showed miR-24-3p negatively regulated the progression of CRC cells, the inhibition of miR-24-3p counteracted the repression effects of CRC progression when knocking down PVT1. In addition, the expression of NRP1 was regulated by PVT1, and NRP1 overexpression could partially rescue the inhibition effects of CRC progression when knocking down PVT1 in vitro and in vivo. Our study reveals that PVT1 promotes the proliferation and metastasis of CRC via regulating the miR-24-3p/NRP1 axis, which provides a prognosis biomarker and a potential therapeutic target for CRC patients.


Assuntos
Neoplasias Colorretais , MicroRNAs , RNA Longo não Codificante , Animais , Humanos , Linhagem Celular Tumoral , Proliferação de Células , Neoplasias Colorretais/genética , Neoplasias Colorretais/patologia , Regulação Neoplásica da Expressão Gênica , Xenoenxertos , MicroRNAs/genética , MicroRNAs/metabolismo , Neuropilina-1/genética , Prognóstico , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Peixe-Zebra/genética , Peixe-Zebra/metabolismo
3.
Ann Transl Med ; 10(21): 1173, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36467335

RESUMO

Background: Long noncoding RNA (lncRNA) short nucleolar RNA host gene 15 (SNHG15) has been found to have an oncogenic function in numerous malignancies. Nevertheless, the biological function and regulatory mechanisms of SNHG15 in breast cancer have not been fully elucidated. Methods: Quantitative real-time polymerase chain reaction (qRT-PCR) was used to detect the expression of SNHG15 and in MDA-MB-231 breast cancer cells. The expression of SNHG15 was silenced using small interfering RNA (siRNA) technology. The proliferation and migration of the cells were examined by colony formation assays, cell counting kit 8 (CCK-8) assays, and transwell assays. For the zebrafish xenograft injection experiments, cultured cells labelled with the fluorescent dye CM-DiI were injected into the perivitelline space of the larvae. Results: This present study revealed that the expression of lncRNA SNHG15 (lnc-SNHG15) was significantly upregulated in breast cancer cells, and its overexpression was associated with the tumor. The relative expression of lnc-SNHG15 could be downregulated using siRNAs, and silencing lnc-SNHG15 inhibited the proliferation and the migration of MDA-MB-231 cells. In vivo experiments using the zebrafish xenograft model showed similar results. Mechanistically, the knockdown effect of lnc-SNHG15 could be restored by inhibiting the expression of the miR-345-5p, confirming the negative regulation between lnc-SNHG15 and miR-345-5p. Interestingly, cisplatin treatment combined with SNHG15 knockdown effectively inhibited MDA-MB-231 cell proliferation and migration in the zebrafish xenograft compared to negative controls. Conclusions: In conclusion, lnc-SNHG15 knockdown increased miR-345-5p expression and negated cisplatin resistance in breast cancer cells, and thus, lnc-SNHG15 may be a potential novel target for breast cancer therapy.

4.
Cancer Cell Int ; 22(1): 353, 2022 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-36376862

RESUMO

BACKGROUND: N6-methyladenosine (m6A) is the most common posttranscriptional modification of RNA and plays critical roles in human cancer progression. However, the biological function of m6A methylation requires further studied in cancer, especially in tumor angiogenesis. METHODS: A public database was used to analyze the expression and overall survival of ALKBH5 and PVT1 in lung cancer patients. CCK-8 and colony formation assays were performed to detect cell proliferation, a transwell assay was used to assess cell migration, and a tube formation assay was performed to assess angiogenic potential in vitro. A zebrafish lung cancer xenograft model was used to verify the function of ALKBH5 and PVT1 in vivo. Western blot assays were used to measure the relative protein expression in lung cancer cells. SRAMP predictor analysis and RNA stability experiments were used to examine the potential m6A modification. RESULTS: Bioinformatics analysis showed that the expression levels of m6A-related genes were changed significantly in lung cancer tissues compared with normal lung tissues. We then identified that ALKBH5 was upregulated in lung cancer tissues and associated with poor prognosis of lung cancer patients by analyzing a public database. Knockdown of ALKBH5 inhibited the proliferation and migration of cultured lung cancer cell lines. Zebrafish lung cancer xenografts showed that ALKBH5 silencing also suppressed the growth and metastasis of lung cancer cells. Moreover, knockdown of ALKBH5 inhibited the angiogenesis of lung cancer in vitro and in vivo. Mechanistic studies showed that knockdown of ALKBH5 decreased the expression and stability of PVT1 in lung cancer cells. We next observed that PVT1 promoted the progression of lung cancer cells in vitro and in vivo and regulated the expression of VEGFA and angiogenesis in lung cancer. Finally, rescue experiments revealed that ALKBH5 regulated the proliferation, migration and angiogenesis of lung cancer cells, partially through PVT1. CONCLUSION: Our results demonstrate that ALKBH5 promotes the progression and angiogenesis of lung cancer by regulating the expression and stability of PVT1, which provides a potential prognostic and therapeutic target for lung cancer patients.

5.
Oncol Lett ; 24(6): 438, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36420078

RESUMO

Long non-coding RNAs (lncRNAs) have been reported to play vital roles in human lung cancer. In recent years, cancer/testis (CT) lncRNAs have been characterized as a novel class of lncRNA. However, this class of lncRNA remains to be thoroughly investigated. The present study identified long intergenic non-protein coding RNA 1635 (LINC01635), which was highly expressed in testis and in a broad range of human cancer types. Next, it was confirmed that LINC01635 was upregulated significantly in samples from patients with lung cancer and in non-small cell lung carcinoma (NSCLC) cell lines. Silencing LINC01635 suppressed the proliferation and metastasis of NSCLC cells in vitro and in vivo. Furthermore, it was found that LINC01635 could bind to microRNA (miRNA or miR)-455-5p and regulate the expression of a series of miR-455-5p-targeting tumor-related genes. Knockdown of miR-455-5p partially rescued the progression of lung cancer cells that was suppressed by LINC01635 silencing. Together, the current results demonstrated that LINC01635 may play important roles in NSCLC progression by targeting miR-455-5p, and that it could be a biomarker and therapeutic target for lung cancer.

6.
Pharmaceuticals (Basel) ; 16(1)2022 Dec 29.
Artigo em Inglês | MEDLINE | ID: mdl-36678547

RESUMO

Diabetic cognitive dysfunction (DCD) is the decline in memory, learning, and executive function caused by diabetes. Although its pathogenesis is unclear, molecular biologists have proposed various hypotheses, including insulin resistance, amyloid ß hypothesis, tau protein hyperphosphorylation hypothesis, oxidative stress and neuroinflammation. DCD patients have no particular treatment options and current pharmacological regimens are suboptimal. In recent years, Chinese medicine research has shown that herbs with multi-component, multi-pathway and multi-target synergistic activities can prevent and treat DCD. Yunnan is home to the medicinal herb Erigeron breviscapus (Vant.) Hand-Mazz. (EBHM). Studies have shown that EBHM and its active components have a wide range of pharmacological effects and applications in cognitive disorders. EBHM's anti-DCD properties have been seldom reviewed. Through a literature study, we were able to evaluate the likely pathophysiology of DCD, prescribe anti-DCD medication and better grasp EBHM's therapeutic potential. EBHM's pharmacological mechanism and active components for DCD treatment were also summarized.

8.
Neuron ; 108(1): 180-192.e5, 2020 10 14.
Artigo em Inglês | MEDLINE | ID: mdl-32827455

RESUMO

During development, endothelial tip cells (ETCs) located at the leading edge of growing vascular plexus guide angiogenic sprouts to target vessels, and thus, ETC pathfinding is fundamental for vascular pattern formation in organs, including the brain. However, mechanisms of ETC pathfinding remain largely unknown. Here, we report that Piezo1-mediated Ca2+ activities at primary branches of ETCs regulate branch dynamics to accomplish ETC pathfinding during zebrafish brain vascular development. ETC branches display spontaneous local Ca2+ transients, and high- and low-frequency Ca2+ transients cause branch retraction through calpain and branch extension through nitric oxide synthase, respectively. These Ca2+ transients are mainly mediated by Ca2+-permeable Piezo1 channels, which can be activated by mechanical force, and mutating piezo1 largely impairs ETC pathfinding and brain vascular patterning. These findings reveal that Piezo1 and downstream Ca2+ signaling act as molecular bases for ETC pathfinding and highlight a novel function of Piezo1 and Ca2+ in vascular development.


Assuntos
Vasos Sanguíneos/crescimento & desenvolvimento , Encéfalo/irrigação sanguínea , Cálcio/metabolismo , Células Endoteliais/metabolismo , Canais Iônicos/genética , Neovascularização Fisiológica/genética , Proteínas de Peixe-Zebra/genética , Animais , Encéfalo/crescimento & desenvolvimento , Sinalização do Cálcio , Calpaína/metabolismo , Canais Iônicos/metabolismo , Mecanotransdução Celular , Mutação , Óxido Nítrico Sintase/metabolismo , Peixe-Zebra , Proteínas de Peixe-Zebra/metabolismo
9.
Sci China Life Sci ; 63(1): 59-67, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31872378

RESUMO

The zebrafish has become a popular vertebrate animal model in biomedical research. However, it is still challenging to make conditional gene knockout (CKO) models in zebrafish due to the low efficiency of homologous recombination (HR). Here we report an efficient non-HR-based method for generating zebrafish carrying a CKO and knockin (KI) switch (zCKOIS) coupled with dual-color fluorescent reporters. Using this strategy, we generated hey2zKOIS which served as a hey2 KI reporter with EGFP expression. Upon Cre induction in targeted cells, the hey2zCKOIS was switched to a non-functional CKO allele hey2zCKOIS-invassociated with TagRFP expression, enabling visualization of the CKO alleles. Thus, simplification of the design, and the visibility and combination of both CKO and KI alleles make our zCKOIS strategy an applicable CKO approach for zebrafish.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Sistemas CRISPR-Cas/genética , Marcação de Genes/métodos , Recombinação Homóloga/genética , Íntrons/genética , Proteínas de Peixe-Zebra/genética , Alelos , Animais , Animais Geneticamente Modificados , Sequência de Bases , Expressão Gênica , Técnicas de Introdução de Genes/métodos , Técnicas de Inativação de Genes/métodos , Engenharia Genética , Genótipo , Proteínas de Fluorescência Verde/genética , Peixe-Zebra
11.
Anesthesiology ; 114(2): 391-400, 2011 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-21245739

RESUMO

BACKGROUND: Celecoxib, a cyclooxygenase-2 inhibitor, is a commonly ingested drug that is used by some women during pregnancy. Although use of celecoxib is associated with increased cardiovascular risk in adults, its effect on fetal heart development remains unknown. METHODS: Zebrafish embryos were exposed to celecoxib or other relevant drugs from tailbud stage (10.3-72 h postfertilization). Heart looping and valve formation were examined at different developmental stages by in vivo confocal imaging. In addition, whole mount in situ hybridization was performed to examine drug-induced changes in the expression of heart valve marker genes. RESULTS: In celecoxib-treated zebrafish embryos, the heart failed to undergo normal looping and the heart valve was absent, causing serious blood regurgitation. Furthermore, celecoxib treatment disturbed the restricted expression of the heart valve markers bone morphogenetic protein 4 and versican-but not the cardiac chamber markers cardiac myosin light chain 2, ventricular myosin heavy chain, and atrial myosin heavy chain. These defects in heart development were markedly relieved by treatment with the cyclooxygenase-2 downstream product prostaglandin E2, and mimicked by the cyclooxygenase-2 inhibitor NS398, implying that celecoxib-induced heart defects were caused by the inhibition of cyclooxygenase-2 activity. CONCLUSIONS: These findings provide the first in vivo evidence that celecoxib exposure impairs heart development in zebrafish embryos by inhibiting cyclooxygenase-2 activity.


Assuntos
Inibidores de Ciclo-Oxigenase 2/efeitos adversos , Ciclo-Oxigenase 2/efeitos dos fármacos , Cardiopatias/induzido quimicamente , Cardiopatias/embriologia , Pirazóis/efeitos adversos , Sulfonamidas/efeitos adversos , Acetaminofen/administração & dosagem , Analgésicos não Narcóticos/administração & dosagem , Análise de Variância , Animais , Celecoxib , Inibidores de Ciclo-Oxigenase 2/administração & dosagem , Relação Dose-Resposta a Droga , Coração/efeitos dos fármacos , Coração/embriologia , Valvas Cardíacas/efeitos dos fármacos , Valvas Cardíacas/embriologia , Pirazóis/administração & dosagem , Sulfonamidas/administração & dosagem , Peixe-Zebra
12.
Circ Res ; 106(7): 1221-32, 2010 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-20185799

RESUMO

RATIONALE: Wiring vascular and neural networks are known to share common molecular signaling pathways. Activation of transient receptor potential type C channels (TRPCs) has recently been shown to underlie chemotropic guidance of neural axons. It is thus of interest to examine whether TRPCs are also involved in vascular development. OBJECTIVE: To determine the role of TRPC1 in angiogenesis in vivo during zebrafish development. METHODS AND RESULTS: Knockdown of zebrafish trpc1 by antisense morpholino oligonucleotides severely disrupted angiogenic sprouting of intersegmental vessels (ISVs) in zebrafish larvae. This angiogenic defect was prevented by overexpression of a morpholino oligonucleotide-resistant form of zebrafish trpc1 mRNA. Cell transplantation analysis showed that this requirement of Trpc1 for ISV growth was endothelial cell-autonomous. In vivo time-lapse imaging further revealed that the angiogenic defect was attributable to impairment of filopodia extension, migration, and proliferation of ISV tip cells. Furthermore, Trpc1 acted synergistically with vascular endothelial growth factor A (Vegf-a) in controlling ISV growth, and appeared to be downstream to Vegf-a in controlling angiogenesis, as evidence by the findings that Trpc1 was required for Vegf-a-induced ectopic angiogenesis of subintestinal veins and phosphorylation of extracellular signal-regulated kinase. CONCLUSIONS: These results provide the first in vivo evidence that TRPC1 is essential for angiogenesis, reminiscent of the role of TRPCs in axon guidance. It implicates that TRPC1 may represent a potential target for treating pathological angiogenesis.


Assuntos
Vasos Sanguíneos/metabolismo , Células Endoteliais/metabolismo , Neovascularização Fisiológica , Canais de Cátion TRPC/metabolismo , Peixe-Zebra/metabolismo , Animais , Animais Geneticamente Modificados , Vasos Sanguíneos/embriologia , Movimento Celular , Proliferação de Células , Células Endoteliais/transplante , Ativação Enzimática , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Técnicas de Silenciamento de Genes , Microscopia Confocal , Microscopia de Vídeo , Oligonucleotídeos Antissenso/metabolismo , Fosforilação , Pseudópodes/metabolismo , RNA Mensageiro/metabolismo , Transdução de Sinais , Canais de Cátion TRPC/genética , Fator A de Crescimento do Endotélio Vascular/metabolismo , Peixe-Zebra/embriologia , Peixe-Zebra/genética
13.
Dev Biol ; 339(1): 89-100, 2010 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-20036229

RESUMO

Mutations in SMARCAL1 cause Schimke Immuno-Osseous Dysplasia (SIOD), an autosomal recessive multisystem developmental disease characterized by growth retardation, T-cell deficiency, bone marrow failure, anemia and renal failure. SMARCAL1 encodes an ATP-driven annealing helicase. However, the biological function of SMARCAL1 and the molecular basis of SIOD remain largely unclear. In this work, we cloned the zebrafish homologue of the human SMARCAL1 gene and found that smarcal1 regulated cell cycle progression. Morpholino knockdown of smarcal1 in zebrafish recapitulated developmental abnormalities in SIOD patients, including growth retardation, craniofacial abnormality, and haematopoietic and vascular defects. Lack of smarcal1 caused G0/G1 cell cycle arrest and induced cell apoptosis. Furthermore, using Electrophoretic Mobility Shift Assay and reporter assay, we found that SMARCAL1 was transcriptionally inhibited by E2F6, an important cell cycle regulator. Over-expression of E2F6 in zebrafish embryos reduced the expression of smarcal1 mRNA and induced developmental defects similar to those in smarcal1 morphants. These results suggest that SIOD may be caused by defects in cell cycle regulation. Our study provides a model of SIOD and reveals its cellular and molecular bases.


Assuntos
Ciclo Celular , DNA Helicases/fisiologia , Peixe-Zebra/embriologia , Animais , Apoptose , Sequência de Bases , Western Blotting , DNA Helicases/genética , Primers do DNA , Ensaio de Desvio de Mobilidade Eletroforética , Técnicas de Silenciamento de Genes , Hibridização In Situ , Mutação , Reação em Cadeia da Polimerase Via Transcriptase Reversa
14.
Mol Biol Rep ; 32(4): 247-55, 2005 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-16328886

RESUMO

In an effort to examine the molecular basis of gametogenesis, we screened Riken cDNA database and the clone 4930481F22 that is expressed preponderantly in mouse testis was identified. In the course of the research, a new isoform of 4930481F22 clone was found, isolated from mouse testis and sequenced. It only lacks the 7th exon of 4930481F22 transcript. The new isoform only has 837 bp and encodes a putative 28.4 kDa protein. We investigated the expression pattern at the mRNA level by RT-PCR and in situ hybridization in testis. The new isoform was only expressed in the gonad, where it began to be detected at day 8 after birth. In situ hybridization proved that the new isoform mostly expressed in spermatocytes. The structure of the predicted protein and the expression pattern of the mRNA suggest that the new isoform could have an important role in meiosis. We temporarily named it mmrp 2 (Mouse Meiosis Related Protein 2).


Assuntos
Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/fisiologia , Meiose/genética , Fosfoproteínas/genética , Fosfoproteínas/metabolismo , Espermatócitos/metabolismo , Sequência de Aminoácidos , Animais , Sequência de Bases , Clonagem Molecular , Biologia Computacional , Primers do DNA , DNA Complementar/genética , Componentes do Gene , Hibridização In Situ , Masculino , Camundongos , Dados de Sequência Molecular , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Análise de Sequência de DNA
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA