Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
1.
Environ Pollut ; 345: 123509, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38325512

RESUMO

Coal fly ash (CFA), an industrial solid waste, can be utilized to synthesize Zeolite Socony Mobil-5 (ZSM-5) by incorporating an external silica source. In this study, a series of ZSM-5 zeolites were synthesized using rice husk ash (RHA) as the primary silica source and CFA as the primary aluminum source under controlled hydrothermal reaction conditions, and the growth mechanism of ZSM-5 was investigated. The process of ZSM-5 growth was featured by the transformation of hyperpoly silico-aluminate in CFA and RHA into monomers. These monomers formed crystal nuclei connected in a five-membered ring structure under the influence of Tetrapropyl ammonium hydroxide (TPAOH). The surplus monomeric silica-aluminate grew on the nucleus surface due to the addition of the silica source within RHA (RHA-SiO2), ultimately resulting in the development of ZSM-5 zeolite. Characterization results demonstrated that RHA-SiO2 exhibited favorable physical and chemical properties during the ZSM-5 synthesis, with a crystallinity of 99.03%, a specific surface area of 321.19 m2/g, a weight loss of only 3.06% at 800 °C and a total acidity of 0.65 mmol/g. To evaluate the catalytic performance of ZSM-5, Fe/Cu-modified ZSM-5 was developed and used as the catalyst for the degradation of tetracycline (TC) in Fenton-like oxidation. The results indicated that Fe/Cu-ZSM-5 exhibited excellent activity and stability as the catalyst for TC degradation and mineralization. The maximum TC degradation rate reached 99.02% in 10 min and the TOC removal could be up to 69.32% in 2 h. Characterization results indicated that the Fe/Cu ions redox cycle accelerated the generation of active species (1O2 and ˙OH) in Fenton-like systems. The ZSM-5 zeolite synthesized from solid waste demonstrated superb stability and catalytic activity, leading to the effective removal of TC. Since real wastewater generally contains various pollutants, future research efforts should focused on multi-pollutant treatment.


Assuntos
Oryza , Zeolitas , Cinza de Carvão/química , Zeolitas/química , Oryza/química , Resíduos Sólidos , Dióxido de Silício/química , Oxirredução , Tetraciclina , Antibacterianos , Carvão Mineral
2.
Int J Mol Sci ; 25(2)2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-38256133

RESUMO

Paeonia ostii 'Feng Dan' is widely cultivated in China for its ornamental, medicinal, and edible properties. The whole plant of tree peony is rich in bioactive substances, while the comprehensive understanding of metabolites in the leaves is limited. In this study, an untargeted metabolomics strategy based on UPLC-ESI-TOF-MS was conducted to analyze the dynamic variations of bioactive metabolites in P. ostii 'Feng Dan' leaves during development. A total of 321 metabolites were rapidly annotated based on the GNPS platform, in-house database, and publications. To accurately quantify the selected metabolites, a targeted method of HPLC-ESI-QQQ-MS was used. Albiflorin, paeoniflorin, pentagalloylglucose, luteolin 7-glucoside, and benzoylpaeoniflorin were recognized as the dominant bioactive compounds with significant content variations during leaf development. Metabolite variations during the development of P. ostii 'Feng Dan' leaves are greatly attributed to the variations in antioxidant activities. Among all tested bacteria, the leaf extract exhibited exceptional inhibitory effects against Streptococcus hemolytis-ß. This research firstly provides new insights into tree peony leaves during development. The stages of S1-S2 may be the most promising harvesting time for potential use in food or pharmaceutical purposes.


Assuntos
Paeonia , China , Bases de Dados Factuais , Alimentos , Espectrometria de Massa com Cromatografia Líquida
3.
bioRxiv ; 2024 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-38014122

RESUMO

By driving monocyte chemotaxis, the chemokine receptor CCR2 shapes inflammatory responses and the formation of tumor microenvironments. This makes it a promising target in inflammation and immuno-oncology; however, despite extensive efforts, there are no FDA-approved CCR2-targeting therapeutics. Cited challenges include the redundancy of the chemokine system, suboptimal properties of compound candidates, and species differences that confound the translation of results from animals to humans. Structure-based drug design can rationalize and accelerate the discovery and optimization of CCR2 antagonists to address these challenges. The prerequisites for such efforts include an atomic-level understanding of the molecular determinants of action of existing antagonists. In this study, using molecular docking and artificial-intelligence-powered compound library screening, we uncover the structural principles of small molecule antagonism and selectivity towards CCR2 and its sister receptor CCR5. CCR2 orthosteric inhibitors are shown to universally occupy an inactive-state-specific tunnel between receptor helices 1 and 7; we also discover an unexpected role for an extra-helical groove accessible through this tunnel, suggesting its potential as a new targetable interface for CCR2 and CCR5 modulation. By contrast, only shape complementarity and limited helix 8 hydrogen bonding govern the binding of various chemotypes of allosteric antagonists. CCR2 residues S1012.63 and V2446.36 are implicated as determinants of CCR2/CCR5 and human/mouse orthosteric and allosteric antagonist selectivity, respectively, and the role of S1012.63 is corroborated through experimental gain-of-function mutagenesis. We establish a critical role of induced fit in antagonist recognition, reveal strong chemotype selectivity of existing structures, and demonstrate the high predictive potential of a new deep-learning-based compound scoring function. Finally, this study expands the available CCR2 structural landscape with computationally generated chemotype-specific models well-suited for structure-based antagonist design.

4.
Comput Inform Nurs ; 42(3): 184-192, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-37607706

RESUMO

Incidence of hospital-acquired pressure injury, a key indicator of nursing quality, is directly proportional to adverse outcomes, increased hospital stays, and economic burdens on patients, caregivers, and society. Thus, predicting hospital-acquired pressure injury is important. Prediction models use structured data more often than unstructured notes, although the latter often contain useful patient information. We hypothesize that unstructured notes, such as nursing notes, can predict hospital-acquired pressure injury. We evaluate the impact of using various natural language processing packages to identify salient patient information from unstructured text. We use named entity recognition to identify keywords, which comprise the feature space of our classifier for hospital-acquired pressure injury prediction. We compare scispaCy and Stanza, two different named entity recognition models, using unstructured notes in Medical Information Mart for Intensive Care III, a publicly available ICU data set. To assess the impact of vocabulary size reduction, we compare the use of all clinical notes with only nursing notes. Our results suggest that named entity recognition extraction using nursing notes can yield accurate models. Moreover, the extracted keywords play a significant role in the prediction of hospital-acquired pressure injury.


Assuntos
Processamento de Linguagem Natural , Úlcera por Pressão , Humanos , Úlcera por Pressão/diagnóstico , Cuidados Críticos , Hospitais
5.
bioRxiv ; 2023 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-37961097

RESUMO

CC chemokine receptor 5 (CCR5) contributes to inflammatory responses by driving cell migration and scavenging chemokine to shape directional chemokine gradients. A drug against CCR5 has been approved for blocking HIV entry into cells. However, targeting CCR5 for the treatment of inflammatory diseases and cancer has had limited success because of the complex biology and pharmacology of this receptor. CCR5 is activated by many natural and engineered chemokines that elicit distinct receptor signaling and trafficking responses, including some that sequester the receptor inside the cell. The sequestration phenomenon may be therapeutically exploitable, but the mechanisms by which different ligands traffic CCR5 to different cellular locations are poorly understood. Here we employed live cell ascorbic acid peroxidase proximity labeling and quantitative mass spectrometry proteomics for unbiased discovery of temporally resolved protein neighborhoods of CCR5 following stimulation with its endogenous agonist, CCL5, and two CCL5 variants that promote intracellular retention of the receptor. Along with targeted pharmacological assays, the data reveals distinct ligand-dependent CCR5 trafficking patterns with temporal resolution. All three chemokines internalize CCR5 via ß-arrestin- dependent, clathrin-mediated endocytosis but to different extents, with different kinetics and with varying dependencies on GPCR kinase subtypes. The agonists differ in their ability to target the receptor to lysosomes for degradation, as well as to the Golgi compartment and the trans-Golgi network, and these trafficking patterns translate into distinct levels of ligand scavenging. The results provide insight into the molecular mechanisms behind CCR5 intracellular sequestration and suggest actionable patterns for the development of chemokine-based CCR5 targeting molecules. Significance Statement: CCR5 plays a crucial role in the immune system and is important in numerous physiological and pathological processes such as inflammation, cancer and HIV transmission. Along with its functional diversity, different CCR5 ligands can induce distinct receptor signaling responses and trafficking behaviors; the latter includes intracellular receptor sequestration which offers a potential therapeutic strategy for inhibiting CCR5 function. Using time-resolved proximity labeling proteomics and targeted pharmacological experiments, this study reveals the molecular basis for receptor sequestration including information that can be exploited for the development of CCR5 targeting molecules that promote retention of the receptor inside the cell.

6.
STAR Protoc ; 4(3): 102460, 2023 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-37516969

RESUMO

Chemokine receptors, a subfamily of G-protein-coupled receptors (GPCRs), are responsible for cell migration during physiological processes as well as in diseases like inflammation and cancers. Here, we present a protocol for solubilizing, purifying, and reconstituting complexes of chemokine receptors with their ligands in "nanodiscs," soluble lipid bilayers that mimic the native environment of membrane receptors. The protocol yields chemokine receptor complexes with sufficient purity and yield for structural and biophysical studies and should be applicable to other GPCRs.


Assuntos
Receptores de Quimiocinas , Receptores Acoplados a Proteínas G , Humanos , Receptores de Quimiocinas/genética , Receptores Acoplados a Proteínas G/metabolismo , Bicamadas Lipídicas/metabolismo
7.
J Proteomics ; 287: 104972, 2023 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-37467890

RESUMO

Congenital cataracts are a threat to visual development in children, and the visual impairment persists after surgical treatment; however, the mechanisms involved remain unclear. Previous clinical studies have identified the effect of congenital cataracts on retinal morphology and function. To further understand the molecular mechanisms by which congenital cataracts affect retinal development, we analyzed retina samples from 7-week-old GJA8-knockout rabbits with congenital cataracts and controls by four-dimensional label-free quantification proteomics and untargeted metabolomics. Bioinformatics analysis of proteomic data showed that retinol metabolism, oxidative phosphorylation, and fatty acid degradation pathways were downregulated in the retinas of rabbits with congenital cataracts, indicating that their visual cycle and mitochondrial function were affected. Additional validation of differentially abundant proteins related to the visual cycle and mitochondrial function was performed using Parallel reaction monitoring and western blot experiments. Untargeted metabolome analysis showed significant upregulation of the antioxidant glutathione and ascorbic acid in the retinas of rabbits with congenital cataracts, indicating that their oxidative stress balance was not dysregulated. SIGNIFICANCE: Congenital cataracts in children can alter retinal structure and function, yet the mechanisms are uncertain. Here is the first study to use proteomics and metabolomics approaches to investigate the effects of congenital cataracts on retinal development in the early postnatal period. Our findings suggest that congenital cataracts have an impact on the retinal visual cycle and mitochondrial function. These findings give insight on the molecular pathways behind congenital cataract-induced visual function impairment in the early postnatal period.


Assuntos
Catarata , Multiômica , Animais , Coelhos , Proteômica , Catarata/congênito , Retina , Biologia Computacional
8.
Regen Biomater ; 10: rbad035, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37206162

RESUMO

Magnetic resonance imaging (MRI) is a promising non-invasive method to assess cartilage regeneration based on the quantitative relationship between MRI features and concentrations of the major components in the extracellular matrix (ECM). To this end, in vitro experiments are performed to investigate the relationship and reveal the underlying mechanism. A series of collagen (COL) and glycosaminoglycan (GAG) solutions at different concentrations are prepared, and T1 and T2 relaxation times are measured with or without a contrast agent (Gd-DTPA2-) by MRI. Fourier transform infrared spectrometry is also used to measure the contents of biomacromolecule-bound water and other water, allowing theoretical derivation of the relationship between biomacromolecules and the resulting T2 values. It has been revealed that the MRI signal in the biomacromolecule aqueous systems is mainly influenced by the protons in hydrogens of biomacromolecule-bound water, which we divide into inner-bound water and outer-bound water. We have also found that COL results in higher sensitivity of bound water than GAG in T2 mapping. Owing to the charge effect, GAG regulates the penetration of the contrast agent during dialysis and has a more significant effect on T1 values than COL. Considering that COL and GAG are the most abundant biomacromolecules in the cartilage, this study is particularly useful for the real-time MRI-guided assessment of cartilage regeneration. A clinical case is reported as an in vivo demonstration, which is consistent with our in vitro results. The established quantitative relation plays a critical academic role in establishing an international standard ISO/TS24560-1:2022 'Clinical evaluation of regenerative knee articular cartilage using delayed gadolinium-enhanced MRI of cartilage (dGEMRIC) and T2 mapping' drafted by us and approved by International Standard Organization.

9.
Biomaterials ; 298: 122139, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37148756

RESUMO

Magnetic hyperthermia therapy (MHT) is a promising new modality to deal with solid tumors, yet the low magnetic-heat conversion efficacy, magnetic resonance imaging (MRI) artifacts, easy leakage of magnetic nanoparticles, and thermal resistance are the main obstacles to expand its clinical applications. Herein, a synergistic strategy based on a novel injectable magnetic and ferroptotic hydrogel is proposed to overcome these bottlenecks and boost the antitumor efficacy of MHT. The injectable hydrogel (AAGel) exhibiting a sol-gel transition upon heating is made of arachidonic acid (AA)-modified amphiphilic copolymers. Ferrimagnetic Zn0.4Fe2.6O4 nanocubes with high-efficiency hysteresis loss mechanism are synthesized and co-loaded into AAGel with RSL3, a potent ferroptotic inducer. This system maintains the temperature-responsive sol-gel transition, and provides the capacity of multiple MHT and achieves accurate heating after a single injection owing to the firm anchoring and uniform dispersion of nanocubes in the gel matrix. The high magnetic-heat conversion efficacy of nanocubes coupled with the application of echo limiting effect avoids the MRI artifacts during MHT. Besides the function of magnetic heating, Zn0.4Fe2.6O4 nanocubes combined with multiple MHT can sustain supply of redox-active iron to generate reactive oxygen species and lipid peroxides and accelerate the release of RLS3 from AAGel, thus enhancing the antitumor efficacy of ferroptosis. In turn, the reinforced ferroptosis can alleviate the MHT-triggered thermal resistance of tumors by impairment of the protective heat shock protein 70. The synergy strategy achieves the complete elimination of CT-26 tumors in mice without causing local tumor recurrence and other severe side effects.


Assuntos
Ferroptose , Hipertermia Induzida , Nanopartículas , Neoplasias , Animais , Camundongos , Hipertermia Induzida/métodos , Hidrogéis , Neoplasias/terapia , Linhagem Celular Tumoral
10.
Graefes Arch Clin Exp Ophthalmol ; 261(4): 1019-1027, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36385570

RESUMO

PURPOSE: To evaluate the accuracy of newer generation intraocular lens (IOL) power calculation formulas (EVO 2.0 and Kane) with established formulas (Barrett Universal II, Haigis and SRK/T) in pediatric cataract patients. METHODS: Retrospective study. We enrolled 110 eyes (110 patients) in Eye Hospital of Wenzhou Medical University. All patients underwent uneventful cataract surgery and implanted with posterior chamber IOL in the bag. We calculate the mean prediction errors (PE) and percentage within 1 diopter (D) at 1 month to assess the accuracy, and percentage > 2D was defined as prediction accident. Then, we performed subgroup analysis according to age and axial length (AL). RESULTS: The mean age and AL were 37.45 ± 23.28 months and 21.16 ± 1.29 mm. The mean PE for all patients was as follows: Barrett (- 0.30), EVO (0.18), Haigis (- 0.74), Kane (- 0.36), and SRK/T (0.58), p < 0.001. In addition, EVO and SRK/T formulas were relatively accurate in patients younger than 24 months and with AL ≤ 21 mm, while EVO got lower prediction accident rate than SRK/T (3/41 vs 8/41, 4/52 vs 5/52). Moreover, Barrett, EVO, and Kane formulas achieved better accuracy and lower prediction accident rate in patients older than 24 months and with AL > 21 mm (both > 51/69 and 43/58, and < 3/69 and 3/58). CONCLUSIONS: In patients older than 24 months and with AL > 21 mm, Barrett, EVO, and Kane formulas were relatively accurate, while in patients younger than 24 months and with AL ≤ 21 mm, EVO was more accurate, followed by SRK/T formula.


Assuntos
Catarata , Lentes Intraoculares , Facoemulsificação , Humanos , Criança , Refração Ocular , Acuidade Visual , Estudos Retrospectivos , Óptica e Fotônica , Catarata/complicações , Biometria , Comprimento Axial do Olho
11.
Environ Res ; 216(Pt 3): 114724, 2023 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-36343712

RESUMO

In this study, the facile carbothermal reduction method was enforced using urea as dopant to modify the structure and chemical composition of nanoscale zero-valent-iron/biochar hybrid thereby boosting its reduction performance. Through fine-tuning the N-doped amount, the optimal nZVI/N-doped BC was obtained, which exhibited more active sites (nZVI, persistent free radicals (PFRs), pyrrolic-N) and superior electrochemical conductivity. With these blessings, the electrons originating from galvanic cell reaction could zip along the highway within the hybrid. Taking nitrobenzene (NB) as the target pollutant, the quantitative analysis revealed that the NB reduction and adsorption removal efficiency were dramatically improved by 2.42 and 2.78 times, respectively. What's more, combining the in-situ experimental detection and theoretical calculations, unexpected NB reductive multipath with respect to PFRs and pyrrolic-N accelerating the Fe3+/Fe2+ cycle within the nZVI/N-doped BC system was decoded. The enhancement of Fe3+/Fe2+ cycle improved the electron utilization efficiency and maintained the reduction reactivity of the hybrid. This work raised awareness of the mechanisms regarding the reduction performance of nZVI/N-doped BC elevated by N-doped and the pollutant reductive pathway within the system, uncovered the dusty roles of PFRs and N-species during the reduction process.

12.
Comput Math Methods Med ; 2022: 9317114, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36277012

RESUMO

Objective: The purpose is to investigate the influence of nifedipine, labetalol, and magnesium sulfate on blood pressure control, blood coagulation, and maternal and infant outcome in those suffering from pregnancy-induced hypertension (PIH). Methods: From January 2019 to April 2021, 100 participants with PIH in our center were randomly assigned to a control group and a research group. As a control, nifedipine combined with magnesium sulfate was administered. Nifedipine, labetalol, and magnesium sulfate were administered to the research group. The curative effect, blood pressure level, blood coagulation function, vascular endothelial function, and pregnancy comparisons were made between the two groups. Results: Based on the results of the study, the effective rate totaled 92.00%, while as for the control group, it was 80.0%, which indicates that there was a statistically significant difference between the effective rates of the research group and that of the control group, and the difference was statistically significant (P < 0.05). Blood pressure and blood coagulation function did not differ significantly between the two groups before treatment, and the difference was not statistically significant (P > 0.05). After treatment, both groups experienced a significant drop in systolic and diastolic blood pressure. After treatment, a higher PT index was found in the research group than in the control group. Likewise, the Fbg, D-D, and PLT were lower compared to those in the control group, and the difference was statistically significant (P < 0.05). Neither group had significantly different vascular endothelial function before treatment, and the difference was not statistically significant (P > 0.05). After treatment, the ET-1 of the two groups decreased, and the level of NO increased. There was a lower ET-1 in the research group than in the control group as well as a higher NO level in the research group than in the control group, and the difference was statistically significant (P < 0.05). Compared with the pregnancy outcome, in comparison to the controls, the research group had a higher vaginal delivery rate. Significantly, fewer cases of fetal distress, intrauterine asphyxia, and placental abruption were reported in the research group than in the control group, and the difference was statistically significant (P < 0.05). Conclusion: Nifedipine, in combination with magnesium sulfate and labetalol, is effective at treating PIH, reducing blood pressure, improving blood coagulation, preventing cardiovascular events and vascular endothelial function, and further improve the pregnancy outcome.


Assuntos
Hipertensão Induzida pela Gravidez , Hipertensão , Labetalol , Humanos , Feminino , Gravidez , Labetalol/efeitos adversos , Nifedipino/efeitos adversos , Hipertensão Induzida pela Gravidez/tratamento farmacológico , Hipertensão Induzida pela Gravidez/induzido quimicamente , Pressão Sanguínea , Sulfato de Magnésio/farmacologia , Sulfato de Magnésio/uso terapêutico , Anti-Hipertensivos/efeitos adversos , Placenta , Coagulação Sanguínea
13.
Anal Chem ; 94(22): 8024-8032, 2022 06 07.
Artigo em Inglês | MEDLINE | ID: mdl-35613469

RESUMO

The widespread application of nuclear magnetic resonance (NMR) spectroscopy in detection is currently hampered by its inherently low sensitivity and complications resulting from the undesired signal overlap. Here, we report a detection scheme to address these challenges, where analytes are recognized by 19F-labeled probes to induce characteristic shifts of 19F resonances that can be used as "chromatographic" signatures to pin down each low-concentration analyte in complex mixtures. This unique signal transduction mechanism allows detection sensitivity to be enhanced by using massive chemically equivalent 19F atoms, which was achieved through the proper installation of nonafluoro-tert-butoxy groups on probes of high structural symmetry. It is revealed that the binding of an analyte to the probe can be sensed by as many as 72 chemically equivalent 19F atoms, allowing the quantification of analytes at nanomolar concentrations to be routinely performed by NMR. Applications on the detection of trace amounts of prohibited drug molecules and water contaminants were demonstrated. The high sensitivity and robust resolving ability of this approach represent a first step toward extending the application of NMR to scenarios that are now governed by chromatographic and mass spectrometry techniques. The detection scheme also makes possible the highly sensitive non-invasive multi-component analysis that is difficult to achieve by other analytical methods.


Assuntos
Cromatografia , Imageamento por Ressonância Magnética , Espectroscopia de Ressonância Magnética/métodos , Espectrometria de Massas
14.
Anal Chem ; 94(23): 8285-8292, 2022 06 14.
Artigo em Inglês | MEDLINE | ID: mdl-35622989

RESUMO

Nuclear magnetic resonance (NMR) is an indispensable tool for structural elucidation and noninvasive analysis. Automated identification of analytes with NMR is highly pursued in metabolism research and disease diagnosis; however, this process is often complicated by the signal overlap and the sample matrix. We herein report a detection scheme based on 19F NMR spectroscopy and dynamic recognition, which effectively simplifies the detection signal and mitigates the influence of the matrix on the detection. It is demonstrated that this approach can not only detect and differentiate capsaicin and dihydrocapsaicin in complex real-world samples but also quantify the ibuprofen content in sustained-release capsules. Based on the 19F signals obtained in the detection using a set of three 19F probes, automated analyte identification is achieved, effectively reducing the odds of misrecognition caused by structural similarity.


Assuntos
Ibuprofeno , Imageamento por Ressonância Magnética , Espectroscopia de Ressonância Magnética/métodos
15.
Acta Biomater ; 145: 106-121, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35436591

RESUMO

Uncontrolled bleeding from internal noncompressible wounds is a major cause of prehospital death in military personnel and civilian populations. An ideal hemostatic sealant for emergency care should quickly control blood loss and be removed without debridement for the follow-up treatment in the operating room, yet the lack of suitable materials to meet both requirements is the bottleneck. Herein, we suggest an injectable and dissolvable hydrogel sealant for hemorrhage management of noncompressible wounds. To this end, a 4-arm poly(ethylene glycol) (PEG) crosslinker modified with thioester linkages and terminated with aldehyde groups is designed and synthesized, and to modulate the gel properties and make it suitable as a hemostatic sealant, a mixed amino component composed of poly(ethylene imine) and adipic dihydrazide is employed to react with the PEG crosslinker to form the adhesive and elastic sealant for the first time. The aldehyde groups provide the adhesion to the tissues, and the amino component affords the procoagulant ability. More importantly, the thioester moieties allow the on-demand dissolution of sealant via a thiol-thioester exchange reaction upon exposure to an exogenous thiolate solution. In the rat femoral artery puncture and liver injury models, the administration of the hydrogel sealant dramatically reduces blood loss, and its subsequent removal does not induce rebleeding. Consequently, this hydrogel sealant with the unique feature of on-demand dissolution can not only efficiently control bleeding in emergent scenarios, but also allow non-traumatic re-exposure of wounds during subsequent surgical care. STATEMENT OF SIGNIFICANCE: Sealants, adhesives or hemostatic dressings currently used in emergency situations not only require manual pressure to control bleeding, but also face removal by cutting and mechanical debridement to enable eventual surgical treatment. In this study, we design and develop an injectable and adhesive hydrogel sealant with good procoagulant capacity and on-demand dissolution feature. The application of the hydrogel sealant substantially reduces bleeding from internal noncompressible wounds without the need for direct pressure, and demonstrates for the first time that its controlled removal without debridement does not cause rebleeding. Considering that there are currently no commercial wound sealant systems with the feature of on-demand dissolution, the hydrogel sealant developed by us is expected to address an unmet clinical need.


Assuntos
Serviços Médicos de Emergência , Hemostáticos , Aldeídos , Animais , Materiais Biocompatíveis/farmacologia , Hemorragia/tratamento farmacológico , Hemostáticos/farmacologia , Hidrogéis/farmacologia , Ratos , Solubilidade
16.
Front Public Health ; 10: 788384, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35372237

RESUMO

Objectives: To evaluate the eye-related quality of life (ER-QOL), functional vision, and their determinants in children following congenital and developmental cataract surgery, as the impact on their families, using the Pediatric Eye Questionnaire (PedEyeQ). Materials and Methods: This was a retrospective cross-sectional study involving 107 children (aged 0-11 years) with congenital and developmental cataracts who had undergone surgery, as well as 59 visually healthy controls (aged 0-11 years). One parent for each child completed either the Proxy 0-4 PedEyeQ, the Proxy 5-11 PedEyeQ, or the Parent PedEyeQ, depending on their child's age. Mann-Whitney U and Kruskal-Wallis tests were then conducted to compare the differences between groups and to analyze their determinants. Results: PedEyeQ scores were found to be lower in postoperative children with congenital and developmental cataracts compared with the control group across all study domains. The PedEyeQ Proxy 0 to 4 years' greatest mean difference was 27 points worse in the Functional Vision domain (95% CI -34 to -19; p < 0.001). We also found that the occurrence of nystagmus (p < 0.005) and strabismus (p < 0.005) were the major factors affecting participants' functional vision. The PedEyeQ Proxy 5 to 11 years' greatest mean difference was 23 points worse in this same domain (95% CI -30 to -15; p < 0.001), with nystagmus (p < 0.05) being the main determinant herein. Parent PedEyeQ 0 to 4 years' greatest difference was 46 points worse on the Worry about their Child's Eye Condition domain (95% CI -57 to -36; p < 0.001). Similarly, parents of children with ophthalmologic abnormalities, including nystagmus (p < 0.001) and strabismus (p < 0.05), were significantly more worried about their children's eye condition. Parent PedEyeQ 5 to 11 years' greatest difference was also found to be 30 points worse on the Worry about their Child's Eye Condition domain (95% CI -43 to -17; p < 0.005). Conclusions: Children who have undergone congenital and developmental cataract surgery experience a lower quality of life and reduced functional vision. Their families are also significantly and adversely affected herein. Thus, more attention is needed on these groups, with more focused measures being administered to both children and their families.


Assuntos
Extração de Catarata , Catarata , Catarata/congênito , Criança , Pré-Escolar , Estudos Transversais , Família , Humanos , Lactente , Recém-Nascido , Qualidade de Vida , Estudos Retrospectivos , Inquéritos e Questionários
17.
RSC Adv ; 12(7): 3892-3896, 2022 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-35425450

RESUMO

The modulation effects of Cu2+/Fe3+ ions on the hydrogen-bonded structure of 4,4',4''-(1,3,5-triazine-2,4,6-triyl) tribenzoic acid (TATB) on a HOPG surface have been investigated at the liquid-solid interface by scanning tunneling microscopy (STM). STM observations directly demonstrated that the self-assembled honeycomb network of TATB has been dramatically transformed after introducing CuCl2/FeCl3 with different concentrations. The metal-organic coordination structures are formed due to the incorporation of the Cu2+/Fe3+ ions. Interestingly, a Cu2+ ion remains coordinated to two COOH groups and only the number of COOH groups involved in coordination doubles when the concentration of Cu2+ ions doubled. A Fe3+ ion changes from coordination to three COOH groups to two COOH groups after increasing the concentration of Fe3+ ions in a mixed solution. Such results suggest that the self-assembled structures of TATB molecules formed by metal-ligand coordination bonds can be effectively adjusted by regulating the concentration of metal ions in a mixed solution, which has rarely been reported before. It explains that the regulatory effect of concentration leads to the diversity of molecular architectures dominated by coordination bonds.

18.
J Colloid Interface Sci ; 612: 308-322, 2022 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-34998191

RESUMO

The ternary micro-electrolysis material iron/nickel-carbon (Fe/Ni-AC) with enhanced reducibility was constructed by introducing the trace transition metal Ni based on the iron/carbon (Fe/AC) system and used for the removal of 4-nitrochlorobenzene (4-NCB) in solution. The composition and structures of the Fe/Ni-AC were analyzed by various characterizations to estimate its feasibility as reductants for pollutants. The removal efficiency of 4-NCB by Fe/Ni-AC was considerably greater than that of Fe/AC and iron/nickel (Fe/Ni) binary systems. This was mainly due to the enhanced reducibility of 4-NCB by the synergism between anode and double-cathode in the ternary micro-electrolysis system (MES). In the Fe/Ni-AC ternary MES, zero-iron (Fe0) served as anode involved in the formation of galvanic couples with activated carbon (AC) and zero-nickel (Ni0), respectively, where AC and Ni0 functioned as double-cathode, thereby promoting the electron transfer and the corrosion of Fe0. The cathodic and catalytic effects of Ni0 that existed simultaneously could not only facilitate the corrosion of Fe0 but also catalyze H2 to form active hydrogen (H*), which was responsible for 4-NCB transformation. Besides, AC acted as a supporter which could offer the reaction interface for in-situ reduction, and at the same time provide interconnection space for electrons and H2 to transfer from Fe0 to the surface of Ni0. The results suggest that a double-cathode of Ni0 and AC could drive much more electrons, Fe2+ and H*, thus serving as effective reductants for 4-NCB reduction.


Assuntos
Ferro , Poluentes Químicos da Água , Carvão Vegetal , Eletrodos , Eletrólise , Níquel
19.
Phys Chem Chem Phys ; 24(5): 3030-3034, 2022 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-35039814

RESUMO

Using a template to control the on-surface polymerization process is valuable for building functional molecular nanostructures. Here, the role of the symmetric matching between a halogen-ligand component (H2TBrPP) and the substrate for the fabrication of a regular metal-organic structure on Cu(111) and Cu(100) surfaces was studied using scanning tunnelling microscopy (STM). Considering the formation of short-range order polymers on the Au(111) surface via the process of debromination due to the weak directing effect from the substrate to the precursors, a bilayer of ordered assembled structure of H2TBrPP/Au(111) has been fabricated and the molecules in the top layer are guided by the first-layer molecules. Owing to the steering effect of the substrate-directed molecular template, the H2TBrPP components in the top layer were polymerized into ordered molecular chain arrays along the given direction that is determined by the initial close-packed assembled structure of H2TBrPP components during the post-annealing treatment.

20.
Chemosphere ; 289: 133148, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34864010

RESUMO

A porous carbon obtained from cotton/polyester textile wastes was synthesized by the calcium acetate template method. This research studied the effect of preparation conditions and evaluated the characterization of porous carbon, and further explored its formation mechanism. The porous carbon possessed a high specific surface area of 1106.63 m2/g under an optimum condition (pyrolysis temperature = 800 °C, mass ratio of CA: CPW = 1.5:1, pyrolysis time = 1.5 h). It was found that calcium acetate played the role of catalyst to promote the degradation of cotton/polyester textile. CaCO3 and CaO fabricated by calcium acetate acted as the template to generate a mesoporous structure. The generated CO2 etched carbon skeleton to create a large number of micropores. Besides, it was supported as the carbon source to fuse with carbon structures, further consolidating the aromatic structures of porous carbon. The optimized porous carbon has a high adsorption capacity of 506.40 mg/g for tetracycline. And the adsorption data fitted better by the first-pseudo-order model and Langmuir isotherms with an endothermic and spontaneous adsorption process. The cotton/polyester-based porous carbon was a promising economical material for tetracycline.


Assuntos
Carbono , Tetraciclina , Acetatos , Adsorção , Compostos de Cálcio , Porosidade , Têxteis
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA