RESUMO
Recent developments point to exciting potential of cryogenic electron microscopy (cryo-EM) for fundamental environmental research, especially for characterizing environmental samples with a high-water content. As a matter of fact, most environmental materials including soils, sediments, biomass, solid wastes and sludge are hydrated. This perspective provides a brief synopsis of cryo-EM and highlights emerging applications in environmental research. With cryogenic techniques, specimens are preserved by rapid freezing and observed with electron microscopes operating at high-vacuum and low temperature to keep the ice in amorphous state and reduce the effect of radiation damage. So far, cryo-EM has been successfully applied to advance fundamental understanding of physical, chemical and biological mechanisms due to its desirable properties to maintain the native state of hydrated samples and visualize structures at high resolution in three dimensions. The cryo-EM technique also has significant applications to the technology development of pathogen detection, sludge dewatering, waste treatment, and green chemical production from cellular biomass as cellular water content can be clearly observed and manipulated at the single cell level.
Assuntos
Esgotos , Água , Microscopia Crioeletrônica/métodos , VácuoRESUMO
Bicarbonate, ubiquitous in natural and waste waters is an important factor regulating the rate and efficiency of pollutant separation and transformation. For example, it can form complexes with U(VI) in the aqueous phase and at the solid-water interface. In this work, we investigated the effect of bicarbonate on the aging of nanoscale zero-valent (nZVI) in the context of U(VI) reduction and removal from wastewater. For fresh nZVI, over 99% aqueous uranium was separated in less than 10â¯min, of which 83% was reduced from U(VI) to U(IV). When nZVI was aged in water, its activity for U(VI) sequestration and reduction was significantly reduced. Batch experiments showed that for nZVI aged in the presence of 10â¯mM bicarbonate, only 20.3% uranium was reduced to U(IV) after 6â¯h reactions. Characterizations of the iron nanoparticles with spherical aberration corrected scanning transmission electron microscopy (Cs-STEM) suggest that in fresh nZVI, uranium was concentrated at the nanoparticle center; whereas in nZVI aged in bicarbonate, uranium was largely deposited on the outer surface of the nanoparticles. Furthermore, aged nZVI without bicarbonate contained more lepidocrocite (γ-FeOOH) while aged nZVI in the presence of bicarbonate had more magnetite/maghemite (Fe3O4/γ-Fe2O3). This could be attributed to the formation of carbonate green rust and pH buffer effect of . Primary mechanisms for U(VI) removal with nZVI include reduction, sorption and/or precipitation. Results demonstrate that bicarbonate alter the aging products of nZVI, and reduces the separation efficiency and reduction capability for uranium removal.