Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 316
Filtrar
1.
Neural Regen Res ; 20(4): 917-935, 2025 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38989927

RESUMO

Epilepsy is a severe, relapsing, and multifactorial neurological disorder. Studies regarding the accurate diagnosis, prognosis, and in-depth pathogenesis are crucial for the precise and effective treatment of epilepsy. The pathogenesis of epilepsy is complex and involves alterations in variables such as gene expression, protein expression, ion channel activity, energy metabolites, and gut microbiota composition. Satisfactory results are lacking for conventional treatments for epilepsy. Surgical resection of lesions, drug therapy, and non-drug interventions are mainly used in clinical practice to treat pain associated with epilepsy. Non-pharmacological treatments, such as a ketogenic diet, gene therapy for nerve regeneration, and neural regulation, are currently areas of research focus. This review provides a comprehensive overview of the pathogenesis, diagnostic methods, and treatments of epilepsy. It also elaborates on the theoretical basis, treatment modes, and effects of invasive nerve stimulation in neurotherapy, including percutaneous vagus nerve stimulation, deep brain electrical stimulation, repetitive nerve electrical stimulation, in addition to non-invasive transcranial magnetic stimulation and transcranial direct current stimulation. Numerous studies have shown that electromagnetic stimulation-mediated neuromodulation therapy can markedly improve neurological function and reduce the frequency of epileptic seizures. Additionally, many new technologies for the diagnosis and treatment of epilepsy are being explored. However, current research is mainly focused on analyzing patients' clinical manifestations and exploring relevant diagnostic and treatment methods to study the pathogenesis at a molecular level, which has led to a lack of consensus regarding the mechanisms related to the disease.

2.
Bioact Mater ; 40: 378-395, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-38978801

RESUMO

Extracellular vesicles from skin-derived precursor Schwann cells (SKP-SC-EVs) promote neurite outgrowth in culture and enhance peripheral nerve regeneration in rats. This study aimed at expanding the application of SKP-SC-EVs in nerve grafting by creating a chitosan/PLGA-based, SKP-SC-EVs-containing tissue engineered nerve graft (TENG) to bridge a 40-mm long sciatic nerve defect in dogs. SKP-SC-EVs contained in TENGs significantly accelerated the recovery of hind limb motor and electrophysiological functions, supported the outgrowth and myelination of regenerated axons, and alleviated the denervation-induced atrophy of target muscles in dogs. To clarify the underlying molecular mechanism, we observed that SKP-SC-EVs were rich in a variety of miRNAs linked to the axon growth of neurons, and miR-30b-5p was the most important among others. We further noted that miR-30b-5p contained within SKP-SC-EVs exerted nerve regeneration-promoting effects by targeting the Sin3a/HDAC complex and activating the phosphorylation of ERK, STAT3 or CREB. Our findings suggested that SKP-SC-EVs-incorporating TENGs represent a novel type of bioactive material with potential application for peripheral nerve repair in the clinic.

3.
J Adv Res ; 2024 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-39002719

RESUMO

INTRODUCTION: Motor neurons differ from sensory neurons in aspects including origins and surrounding environment. Understanding the similarities and differences in molecular response to peripheral nerve injury (PNI) and regeneration between sensory and motor neurons is crucial for developing effective drug targets for CNS regeneration. However, genome-wide comparisons of molecular changes between sensory and motor neurons following PNI remains limited. OBJECTIVES: This study aims to investigate genome-wide convergence and divergence of injury response between sensory and motor neurons to identify novel drug targets for neural repair. METHODS: We analyzed two large-scale RNA-seq datasets of in situ captured sensory neurons (SNs) and motoneurons (MNs) upon PNI, retinal ganglion cells and spinal cord upon CNS injury. Additionally, we integrated these with other related single-cell level datasets. Bootstrap DESeq2 and WGCNA were used to detect and explore co-expression modules of differentially expressed genes (DEGs). RESULTS: We found that SNs and MNs exhibited similar injury states, but with a delayed response in MNs. We identified a conserved regeneration-associated module (cRAM) with 274 shared DEGs. Of which, 47% of DEGs could be changed in injured neurons supported by single-cell resolution datasets. We also identified some less-studied candidates in cRAM, including genes associated with transcription, ubiquitination (Rnf122), and neuron-immune cells cross-talk. Further in vitro experiments confirmed a novel role of Rnf122 in axon growth. Analysis of the top 10% of DEGs with a large divergence suggested that both extrinsic (e.g., immune microenvironment) and intrinsic factors (e.g., development) contributed to expression divergence between SNs and MNs following injury. CONCLUSIONS: This comprehensive analysis revealed convergent and divergent injury response genes in SNs and MNs, providing new insights into transcriptional reprogramming of sensory and motor neurons responding to axonal injury and subsequent regeneration. It also identified some novel regeneration-associated candidates that may facilitate the development of strategies for axon regeneration.

4.
Proc Natl Acad Sci U S A ; 121(28): e2404210121, 2024 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-38954541

RESUMO

Mesenchymal stem cells (MSCs) are essential in regenerative medicine. However, conventional expansion and harvesting methods often fail to maintain the essential extracellular matrix (ECM) components, which are crucial for their functionality and efficacy in therapeutic applications. Here, we introduce a bone marrow-inspired macroporous hydrogel designed for the large-scale production of MSC-ECM spheroids. Through a soft-templating approach leveraging liquid-liquid phase separation, we engineer macroporous hydrogels with customizable features, including pore size, stiffness, bioactive ligand distribution, and enzyme-responsive degradability. These tailored environments are conducive to optimal MSC proliferation and ease of harvesting. We find that soft hydrogels enhance mechanotransduction in MSCs, establishing a standard for hydrogel-based 3D cell culture. Within these hydrogels, MSCs exist as both cohesive spheroids, preserving their innate vitality, and as migrating entities that actively secrete functional ECM proteins. Additionally, we also introduce a gentle, enzymatic harvesting method that breaks down the hydrogels, allowing MSCs and secreted ECM to naturally form MSC-ECM spheroids. These spheroids display heightened stemness and differentiation capacity, mirroring the benefits of a native ECM milieu. Our research underscores the significance of sophisticated materials design in nurturing distinct MSC subpopulations, facilitating the generation of MSC-ECM spheroids with enhanced therapeutic potential.


Assuntos
Matriz Extracelular , Hidrogéis , Células-Tronco Mesenquimais , Esferoides Celulares , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/metabolismo , Hidrogéis/química , Matriz Extracelular/metabolismo , Esferoides Celulares/citologia , Esferoides Celulares/metabolismo , Humanos , Diferenciação Celular , Técnicas de Cultura de Células/métodos , Proliferação de Células , Porosidade , Mecanotransdução Celular/fisiologia , Células Cultivadas
5.
ACS Synth Biol ; 2024 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-39002162

RESUMO

Engineered Living Materials (ELMs) are materials composed of or incorporating living cells as essential functional units. These materials can be created using bottom-up approaches, where engineered cells spontaneously form well-defined aggregates. Alternatively, top-down methods employ advanced materials science techniques to integrate cells with various kinds of materials, creating hybrids where cells and materials are intricately combined. ELMs blend synthetic biology with materials science, allowing for dynamic responses to environmental stimuli such as stress, pH, humidity, temperature, and light. These materials exhibit unique "living" properties, including self-healing, self-replication, and environmental adaptability, making them highly suitable for a wide range of applications in medicine, environmental conservation, and manufacturing. Their inherent biocompatibility and ability to undergo genetic modifications allow for customized functionalities and prolonged sustainability. This review highlights the transformative impact of ELMs over recent decades, particularly in healthcare and environmental protection. We discuss current preparation methods, including the use of endogenous and exogenous scaffolds, living assembly, 3D bioprinting, and electrospinning. Emphasis is placed on ongoing research and technological advancements necessary to enhance the safety, functionality, and practical applicability of ELMs in real-world contexts.

7.
Cancer Commun (Lond) ; 44(7): 791-832, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38923737

RESUMO

Phagocytosis, a vital defense mechanism, involves the recognition and elimination of foreign substances by cells. Phagocytes, such as neutrophils and macrophages, rapidly respond to invaders; macrophages are especially important in later stages of the immune response. They detect "find me" signals to locate apoptotic cells and migrate toward them. Apoptotic cells then send "eat me" signals that are recognized by phagocytes via specific receptors. "Find me" and "eat me" signals can be strategically harnessed to modulate antitumor immunity in support of cancer therapy. These signals, such as calreticulin and phosphatidylserine, mediate potent pro-phagocytic effects, thereby promoting the engulfment of dying cells or their remnants by macrophages, neutrophils, and dendritic cells and inducing tumor cell death. This review summarizes the phagocytic "find me" and "eat me" signals, including their concepts, signaling mechanisms, involved ligands, and functions. Furthermore, we delineate the relationships between "find me" and "eat me" signaling molecules and tumors, especially the roles of these molecules in tumor initiation, progression, diagnosis, and patient prognosis. The interplay of these signals with tumor biology is elucidated, and specific approaches to modulate "find me" and "eat me" signals and enhance antitumor immunity are explored. Additionally, novel therapeutic strategies that combine "find me" and "eat me" signals to better bridge innate and adaptive immunity in the treatment of cancer patients are discussed.


Assuntos
Neoplasias , Fagocitose , Transdução de Sinais , Humanos , Neoplasias/imunologia , Neoplasias/terapia , Transdução de Sinais/imunologia , Animais , Fagócitos/imunologia , Apoptose
8.
J Inflamm Res ; 17: 3603-3615, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38855169

RESUMO

Background: Vascular adhesion protein-1 (VAP-1), an inflammation-inducible endothelial cell molecule, was reported to be implicated in a variety of cardiovascular diseases. However, the clinical significance of circulating VAP-1 levels in patients with coronary heart disease (CHD) remains less studied. Patients and Methods: We retrospectively analyzed clinical data of 336 hospitalized patients in the Second Affiliated Hospital of Soochow University from May 2020 to September 2022, 174 of which were diagnosed with CHD. Serum VAP-1 was measured by enzyme-linked immunosorbent assay at enrollment. The primary end point of this study was the occurrence of major adverse cardiovascular events (MACE). The coronary stenosis and clinical manifestations of CHD were assessed and recorded from medical records or follow-up calls. The relevant results were obtained, and the reliability of the conclusions was verified through regression analysis, curve fitting, and survival curve. Results: After adjusting for potential confounders, higher serum VAP-1 level was associated with increased risk of MACE in patients with CHD [(HR = 5.11, 95% CI = 1.02-25.59), (HR = 5.81, 95% CI = 1.16-29.11)]. The results of curve fitting and survival analysis were consistent with those of regression analysis. However, no significant association was observed between VAP-1 and MACE in the entire study population [(HR = 5.11, 95% CI = 0.41-1.93), (HR = 1.17, 95% CI = 0.52-2.62)]. Furthermore, the level of VAP-1 did not show a significant correlation with coronary stenosis and the clinical manifestations of CHD. Conclusion: These findings suggested that CHD patients with higher serum levels of VAP-1 are at a higher risk of adverse cardiovascular outcomes.

9.
Front Physiol ; 15: 1368542, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38706946

RESUMO

Background: Many people infected with COVID-19 develop myocardial injury. Epicardial adipose tissue (EAT) is among the various risk factors contributing to coronary artery disease. However, its correlation with myocardial injury in patients diagnosed with COVID-19 remains uncertain. Methods: We examined myocardial biomarkers in population affected by COVID-19 during the period from December 2022 to January 2023. The patients without myocardial injury were referred to as group A (n = 152) and those with myocardial injury were referred to as group B (n = 212). Results: 1) The A group and the B group exhibitedstatistically significant differences in terms of age, TC, CRP, Cr, BUN, LDL-C, IL-6, BNP, LVEF and EAT (p < 0.05). 2) EAT volumehad a close relationship with IL-6, LDL-C, cTnI, and CRP (p < 0.05); the corresponding correlation coefficient values were 0.24, 0.21, 0.24, and 0.16. In contrast to those with lower EAT volume, more subjects with a higher volume of EAT had myocardial injury (p < 0.05). Regression analysis showed that EAT, LDL-C, Age and Cr were established as independent risk variables for myocardial injury in subjects affected by COVID-19. 3) In COVID-19 patients, the likelihood of myocardial injury rised notably as EAT levels increase (p < 0.001). Addition of EAT to the basic risk model for myocardial injury resulted in improved reclassification. (Net reclassification index: 58.17%, 95% CI: 38.35%, 77.99%, p < 0.001). Conclusion: Patients suffering from COVID-19 with higher volume EAT was prone to follow myocardial injury and EAT was an independent predictor of heart damage in these individuals.

10.
Neuroscience ; 549: 1-12, 2024 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-38705349

RESUMO

Parkinson's disease (PD) is a common and complex neurodegenerative disease. This disease is typically characterized by the formation of Lewy bodies in multiple brain regions and dopaminergic neuronal loss in the substantia nigra pars compacta, resulting in non-motor symptoms (e.g., olfactory deficits) and motor dysfunction in the late stages. There is yet no effective cure for Parkinson's disease. Considering the neuroprotective effects of exosomes, we investigated whether intranasal administration of umbilical cord mesenchymal stem cell exosomes could improve behavioral functions in PD mice. First, exosomes were endocytosed by the cells in vitro and in vivo, indicating that exosomes can cross the blood-brain barrier. Second, we found that both motor and non-motor functions of the PD models were effectively improved during intranasal exosomes treatment. Finally, the activity of olfactory bulb neurons was improved and the loss of dopaminergic neurons in the substantia nigra pars compacta was reversed. Moreover, exosomes attenuated microglia and astrocyte activation, leading to a low level of inflammation in the brain. In conclusion, our study provided a new reference for the clinical application of exosomes in the treatment of PD.


Assuntos
Administração Intranasal , Neurônios Dopaminérgicos , Exossomos , Células-Tronco Mesenquimais , Camundongos Endogâmicos C57BL , Cordão Umbilical , Exossomos/metabolismo , Exossomos/transplante , Animais , Cordão Umbilical/citologia , Células-Tronco Mesenquimais/metabolismo , Masculino , Neurônios Dopaminérgicos/metabolismo , Neurônios Dopaminérgicos/patologia , Bulbo Olfatório , Doença de Parkinson/terapia , Doença de Parkinson/patologia , Doença de Parkinson/metabolismo , Camundongos , Modelos Animais de Doenças , Humanos , Transplante de Células-Tronco Mesenquimais/métodos , Microglia/metabolismo
11.
Adv Healthc Mater ; : e2401793, 2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38804201

RESUMO

Protein-based drugs offer advantages, such as high specificity, low toxicity, and minimal side effects compared to small molecule drugs. However, delivery of proteins to target tissues or cells remains challenging due to the instability, diverse structures, charges, and molecular weights of proteins. Polymers have emerged as a leading choice for designing effective protein delivery systems, but identifying a suitable polymer for a given protein is complicated by the complexity of both proteins and polymers. To address this challenge, a fluorescence-based high-throughput screening platform called ProMatch to efficiently collect data on protein-polymer interactions, followed by in vivo and in vitro experiments with rational design is developed. Using this approach to streamline polymer selection for targeted protein delivery, candidate polymers from commercially available options are identified and a polyhexamethylene biguanide (PHMB)-based system for delivering proteins to white adipose tissue as a treatment for obesity is developed. A branched polyethylenimine (bPEI)-based system for neuron-specific protein delivery to stimulate optic nerve regeneration is also developed. The high-throughput screening methodology expedites identification of promising polymer candidates for tissue-specific protein delivery systems, thereby providing a platform to develop innovative protein-based therapeutics.

12.
Trends Mol Med ; 30(6): 527-529, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38521716

RESUMO

MORF4 (mortality factor on chromosome 4)-related gene 15 (MRG15) is a chromodomain protein that exists in various multiprotein complexes involved in transcription, DNA repair, and development. Here we summarize the recent advances involving MRG15 in modulating liver metabolism, both through its chromatin-binding capability and independently of it, highlighting MRG15 as a potential therapeutic target for liver metabolic diseases.


Assuntos
Hepatopatias , Humanos , Animais , Hepatopatias/metabolismo , Hepatopatias/genética , Hepatopatias/patologia , Fígado/metabolismo , Fígado/patologia , Doenças Metabólicas/metabolismo , Doenças Metabólicas/genética
13.
Exp Neurol ; 376: 114750, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38492636

RESUMO

Nerve injury often leads to severe dysfunction because of the lack of axon regeneration in adult mammal. Intriguingly a series of extracellular vesicles (EVs) have the obvious ability to accelerate the nerve repair. However, the detailed molecular mechanisms to describe that EVs switch neuron from a transmitter to a regenerative state have not been elucidated. This study elucidated the microRNA (miRNA) expression profiles of two types of EVs that promote nerve regeneration. The functions of these miRNAs were screened in vitro. Among the 12 overlapping miRNAs, miR-25-3p was selected for further analysis as it markedly promoted axon regeneration both in vivo and in vitro. Furthermore, knockdown experiments confirmed that PTEN and Klf4, which are the major inhibitors of axon regeneration, were the direct targets of miR-25-3p in dorsal root ganglion (DRG) neurons. The utilization of luciferase reporter assays and functional tests provided evidence that miR-25-3p enhances axon regeneration by targeting Tgif1. Additionally, miR-25-3p upregulated the phosphorylation of Erk. Furthermore, Rapamycin modulated the expression of miR-25-3p in DRG neurons. Finally, the pro-axon regeneration effects of EVs were confirmed by overexpressing miR-25-3p and Tgif1 knockdown in the optic nerve crush model. Thus, the enrichment of miR-25-3p in EVs suggests that it regulates axon regeneration, proving a potential cell-free treatment strategy for nerve injury.


Assuntos
Axônios , Vesículas Extracelulares , Gânglios Espinais , Proteínas de Homeodomínio , MicroRNAs , Regeneração Nervosa , Células de Schwann , Animais , MicroRNAs/genética , MicroRNAs/metabolismo , Regeneração Nervosa/fisiologia , Regeneração Nervosa/genética , Vesículas Extracelulares/metabolismo , Axônios/fisiologia , Células de Schwann/metabolismo , Gânglios Espinais/metabolismo , Gânglios Espinais/citologia , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Camundongos , Pele/metabolismo , Fator 4 Semelhante a Kruppel , Camundongos Endogâmicos C57BL , Células-Tronco/metabolismo
14.
iScience ; 27(2): 108935, 2024 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-38323002

RESUMO

Fibrotic scar is one of the main impediments to axon regeneration following spinal cord injury (SCI). In this study, we found that CD44 was upregulated during the formation of fibrotic scar, and blocking CD44 by IM7 caused downregulation of fibrosis-related extracellular matrix proteins at both 2 and 12 weeks post-spinal cord injury. More Biotinylated dextran amine (BDA)-traced corticospinal tract axons crossed the scar area and extended into the distal region after IM7 administration. A recovery of motor and sensory function was observed based on Basso Mouse Scale (BMS) scores and tail-flick test. In vitro experiments revealed that inhibiting CD44 and JAK2/STAT3 signaling pathway decreased the proliferation, differentiation, and migration of fibroblasts induced by the inflammatory supernatant. Collectively, these findings highlight the critical role of CD44 and its downstream JAK2/STAT3 signaling pathway in fibrotic scar formation, suggesting a potential therapeutic target for SCI.

15.
Regen Biomater ; 11: rbae009, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38420353

RESUMO

With the rapid development of materials science and tissue engineering, a variety of biomaterials have been used to construct tissue engineering scaffolds. Due to the performance limitations of single materials, functional composite biomaterials have attracted great attention as tools to improve the effectiveness of biological scaffolds for tissue repair. In recent years, metal-organic frameworks (MOFs) have shown great promise for application in tissue engineering because of their high specific surface area, high porosity, high biocompatibility, appropriate environmental sensitivities and other advantages. This review introduces methods for the construction of MOFs-based functional composite scaffolds and describes the specific functions and mechanisms of MOFs in repairing damaged tissue. The latest MOFs-based functional composites and their applications in different tissues are discussed. Finally, the challenges and future prospects of using MOFs-based composites in tissue engineering are summarized. The aim of this review is to show the great potential of MOFs-based functional composite materials in the field of tissue engineering and to stimulate further innovation in this promising area.

17.
Heart Lung Circ ; 33(2): 230-239, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38177014

RESUMO

AIM: Pulmonary hypertension due to left heart disease (PH-LHD) is commonly seen in patients with heart failure (HF), but there are limited treatment options. Recent studies have shown an association between aldehyde dehydrogenase 2 (ALDH2) rs671 polymorphisms and pulmonary hypertension (PH). Therefore, this study aimed to investigate the occurrence of ALDH2 rs671 polymorphisms, and the association between ALDH2 and risk of PH-LHD in patients with HF. It also investigated different ALDH2 genotypes and examined their association with cardiac structure and function in HF patients with PH-LHD. METHODS: A total of 178 HF patients were consecutively enrolled in this study: 102 without PH-LHD and 76 with PH-LHD. Clinical data, parameters of echocardiography, and relevant biochemical indexes were recorded in both groups. Differences in data obtained between groups were compared, and the risk of variant ALDH2 polymorphisms with PH-LHD in HF patients was analysed using univariate and multivariate logistic regression. RESULTS: The prevalence of ALDH2 rs671 GA/AA polymorphisms (variant ALDH2) was 24 of 102 patients (23.53%) in the HF without PH-LHD group, and 32 of 76 patients (42.10%) in the HF with PH-LHD group, with a statistically significant difference. Univariate and multivariate logistical regression showed that variant ALDH2 is an independent risk factor for HF combined with PH-LHD. A higher proportion of patients with variant ALDH2 in the HF with PH-LHD group had a tricuspid regurgitation velocity >2.8 m/s, and they had higher values of peak early diastolic velocity of the mitral orifice/peak velocity of the early diastolic wave of the mitral orifice, maximum frequency shift of pulmonary valve flow, and pulmonary artery stiffness. CONCLUSIONS: Variant ALDH2 may be an independent risk factor for HF combined with PH-LHD. Variant ALDH2 may also be involved in pulmonary artery remodelling and is a potential new target for clinical treatment of PH-LHD.


Assuntos
Cardiopatias , Insuficiência Cardíaca , Hipertensão Pulmonar , Humanos , Hipertensão Pulmonar/etiologia , Cardiopatias/complicações , Fatores de Risco , Aldeído Desidrogenase , Aldeído-Desidrogenase Mitocondrial/genética
18.
J Mot Behav ; 56(4): 393-406, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38240295

RESUMO

Virtual reality has gained more attention in the physical training field, but few studies focus on the effects of VR on older adults. Based on existing study we suggest that VR-based upper limb training might be more effective for older adults and used functional near inferred spectrum and movement analysis to evaluate the effects of VR-based training on older adults. 20 older and 20 youth adults were recruited to perform VR training by extending their upper limb to reaching the objects, and non-VR training as a contrast. Both age-related and task-related differences were found in cortical activation, showing that the VR training has aroused more cortical activation. The older groups have more intensive movement but perform worse in terms of task completion. Both groups performed better in VR, and the difference in the older group was higher.


Assuntos
Extremidade Superior , Realidade Virtual , Humanos , Extremidade Superior/fisiologia , Masculino , Feminino , Idoso , Adulto Jovem , Adulto , Pessoa de Meia-Idade , Envelhecimento/fisiologia
19.
Mol Neurobiol ; 61(2): 971-981, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37672148

RESUMO

Transcription factors are essential for the development and regeneration of the nervous system. The current study investigated key regulatory transcription factors in rat spinal cord development via RNA sequencing. The hub gene Ets1 was highly expressed in the spinal cord during the embryonic period, and then its expression decreased during spinal cord development. Knockdown of Ets1 significantly increased the axonal growth of cultured spinal cord neurons. Luciferase reporter assays and chromatin immunoprecipitation assays indicated that Ets1 could directly bind to the Lcn2 promoter and positively regulate Lcn2 transcription. In conclusion, these findings provide the first direct evidence that Ets1 regulates axon growth by controlling Lcn2 expression, and Ets1 may be a novel therapeutic target for axon regeneration in the central nervous system.


Assuntos
Axônios , Fatores de Transcrição , Animais , Ratos , Axônios/metabolismo , Regulação da Expressão Gênica , Regeneração Nervosa , Neurônios/metabolismo , Fatores de Transcrição/metabolismo
20.
Bioact Mater ; 33: 572-590, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38111651

RESUMO

A central question in neural tissue engineering is how the tissue-engineered nerve (TEN) translates detailed transcriptional signals associated with peripheral nerve regeneration into meaningful biological processes. Here, we report a skin-derived precursor-induced Schwann cell (SKP-SC)-mediated chitosan/silk fibroin-fabricated tissue-engineered nerve graft (SKP-SCs-TEN) that can promote sciatic nerve regeneration and functional restoration nearly to the levels achieved by autologous nerve grafts according to behavioral, histological, and electrophysiological evidence. For achieving better effect of neuroregeneration, this is the first time to jointly apply a dynamic perfusion bioreactor and the ascorbic acid to stimulate the SKP-SCs secretion of extracellular matrix (ECM). To overcome the limitation of traditional tissue-engineered nerve grafts, jointly utilizing SKP-SCs and their ECM components were motivated by the thought of prolongating the effect of support cells and their bioactive cues that promote peripheral nerve regeneration. To further explore the regulatory model of gene expression and the related molecular mechanisms involved in tissue engineering-aided peripheral nerve regeneration, we performed a cDNA microarray analysis of gene expression profiling, a comprehensive bioinformatics analysis and a validation study on the grafted segments and dorsal root ganglia tissues. A wealth of transcriptomic and bioinformatics data has revealed complex molecular networks and orchestrated functional regulation that may be responsible for the effects of SKP-SCs-TEN on promoting peripheral nerve regeneration. Our work provides new insights into transcriptomic features and patterns of molecular regulation in nerve functional recovery aided by SKP-SCs-TEN that sheds light on the broader possibilities for novel repair strategies of peripheral nerve injury.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA