Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Opt Express ; 31(22): 36410-36419, 2023 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-38017794

RESUMO

Optical rectification (OR) is a popular way to generate coherent terahertz radiation. Here, we develop a sub-picosecond mid-infrared (mid-IR) light source with a tailored wavelength and pulse duration for enhancing the OR efficiency. Numerical simulations for a LiNbO3-based OR with tilted pulse-front excitation are first conducted to determine the optimal parameters of pump wavelength and pulse duration, demonstrating that the OR efficiency pumped by 4-µm sub-picosecond (0.5-0.6 ps) pulses is approximately twice the value with 0.8-µm pump at the same conditions. Guided by the simulation results, we build a BaGa4Se7-based optical parametric chirped-pulse amplification system with 1030-nm thin-disk pump and broadband mid-IR seeds. The output performances of >200-µJ pulse energy, ∼600-fs pulse duration and 1-kHz pulse repetition rate are achieved in a spectral range tunable from 3.5 to 5 µm. The large energy scalability and high parameter tunability make the light source attractive to high-efficiency OR in various materials.

2.
Opt Lett ; 48(20): 5225-5228, 2023 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-37831833

RESUMO

Broadband optical parametric amplifiers (OPAs) require a group-velocity matching between the signal and the idler. For mid-infrared OPAs, however, the group-velocity matching is usually difficult to meet, rendering a limited gain bandwidth. Here, we report a serial synthesis of bandwidth-limited OPAs to provide a broad gain bandwidth. In a proof-of-principle experiment, two mid-IR OPAs based on KTA crystals with different phase-matching angles are sequentially employed to amplify different spectral regions of a broad seed pulse centered at 3.1 µm. Compared to the traditional two-stage OPA, here the gain bandwidth is nearly doubled, resulting in a much shorter compressed pulse. Such a serial synthesis approach, independent of a nonlinear crystal and an interaction wavelength, particularly suits for enlarging the gain bandwidth of OPAs when broadband amplification is impossible to achieve by a single crystal.

3.
Opt Express ; 31(5): 8864-8874, 2023 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-36859992

RESUMO

We numerically demonstrate highly efficient mid-infrared quasi-parametric chirped-pulse amplification (QPCPA) based on a recently developed Sm3+-doped La3Ga5.5Nb0.5O14 (Sm:LGN) crystal. At pump wavelength around 1 µm, the broadband absorption of Sm3+ on idler pulses can enable QPCPA for femtosecond signal pulses centered at 3.5 or 5 µm, with a conversion efficiency approaching the quantum limit. Due to suppression of back conversion, such mid-infrared QPCPA exhibits robustness against phase-mismatch and pump-intensity variation. The Sm:LGN-based QPCPA will provide an efficient approach for converting currently well-developed intense laser pulses at 1 µm to mid-infrared ultrashort pulses.

4.
Opt Lett ; 47(19): 5244-5247, 2022 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-36181232

RESUMO

Yttrium calcium oxyborate (YCOB) crystals have been widely applied for generating intense near-infrared laser pulses by optical parametric amplification. Here, we show that the YCOB crystals oriented in both the XZ and XY principal planes possess broadband phase-matching property of intrapulse difference-frequency generation in the mid-infrared region. Few-cycle pulses tunable from 2 to 4 µm are experimentally produced by using a 7.5-fs pump laser at 800 nm, in which the conversion efficiency can be as high as 2.5%. With a large-size crystal and high-power pump laser, intrapulse difference-frequency generation based on YCOB may provide a new route for directly producing intense few-cycle mid-infrared pulses.

5.
Opt Lett ; 45(20): 5728-5731, 2020 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-33057269

RESUMO

An ultrashort mid-infrared (IR) source beyond 5 µm is crucial for a plethora of existing and emerging applications in spectroscopy, medical diagnostics, and high-field physics. Nonlinear generation of such sources from well-developed near-IR lasers, however, remains a challenge due to the limitation of mid-IR crystals. Based on oxide La3Ga5.5Nb0.5O14 (LGN) crystals, here we report the generation of femtosecond pulses tunable from 3 to 7 µm by intrapulse difference-frequency generation of 7.5 fs, 800 nm pulses. The efficiency and bandwidth dependences on pump polarization and crystal length are studied for both Type-I and Type-II phase-matching configurations. Maximum pulse energy of ∼10nJ is generated at 5.2 µm with a conversion efficiency of ∼0.14%. Because of the few-cycle pump pulse duration, the generated mid-IR pulses are as short as about three cycles. These results, to the best of our knowledge, represent the first experimental demonstration of LGN in generating mid-IR ultrashort pulses.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA