RESUMO
Herein, we report the optimization of a series of epidermal growth factor receptor (EGFR) Exon20 insertion (Ex20Ins) inhibitors using structure-based drug design (SBDD), leading to the discovery of compound 28, a potent and wild type selective molecule, which demonstrates efficacy in multiple EGFR Ex20Ins xenograft models and blood-brain barrier penetration in preclinical species. Building on our earlier discovery of an in vivo probe, SBDD was used to design a novel bicyclic core with a lower molecular weight to facilitate blood-brain barrier penetration. Further optimization including strategic linker replacement and diversification of the ring system interacting with the c-helix enabled photolytic and metabolic stability improvements. Together with refinement of molecular properties important for achieving high brain exposure, including molecular weight, H-bonding, and polarity, 28 was identified.
RESUMO
Bfl-1, a member of the Bcl-2 family of proteins, plays a crucial role in apoptosis regulation and has been implicated in cancer cell survival and resistance to venetoclax therapy. Due to the unique cysteine residue in the BH3 binding site, the development of covalent inhibitors targeting Bfl-1 represents a promising strategy for cancer treatment. Herein, the optimization of a covalent cellular tool from a lead-like hit using structure based design is described. Informed by a reversible X-ray fragment screen, the strategy to establish interactions with a key glutamic acid residue (Glu78) and optimize binding in a cryptic pocket led to a 1000-fold improvement in biochemical potency without increasing reactivity of the warhead. Compound (R,R,S)-26 has a kinact/KI of 4600 M-1 s-1, shows <1 µM caspase activation in a cellular assay and cellular target engagement, and has good physicochemical properties and a promising in vivo profile.
Assuntos
Proteínas Proto-Oncogênicas c-bcl-2 , Humanos , Proteínas Proto-Oncogênicas c-bcl-2/antagonistas & inibidores , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Relação Estrutura-Atividade , Animais , Antineoplásicos/farmacologia , Antineoplásicos/química , Antineoplásicos/síntese química , Linhagem Celular Tumoral , Modelos Moleculares , Cristalografia por Raios X , Camundongos , Estrutura Molecular , Apoptose/efeitos dos fármacos , Antígenos de Histocompatibilidade MenorRESUMO
PRMT5, a type 2 arginine methyltransferase, has a critical role in regulating cell growth and survival in cancer. With the aim of developing MTA-cooperative PRMT5 inhibitors suitable for MTAP-deficient cancers, herein we report our efforts to develop novel "MTA-cooperative" compounds identified through a high-throughput biochemical screening approach. Optimization of hits was achieved through structure-based design with a focus on improvement of oral drug-like properties. Bioisosteric replacement of the original thiazole guanidine headgroup, spirocyclization of the isoindolinone amide scaffold to both configurationally and conformationally lock the bioactive form, and fine-tuning of the potency, MTA cooperativity, and DMPK properties through specific substitutions of the azaindole headgroup were conducted. We have identified an orally available in vivo lead compound, 28 ("AZ-PRMT5i-1"), which shows sub-10 nM PRMT5 cell potency, >50-fold MTA cooperativity, suitable DMPK properties for oral dosing, and significant PRMT5-driven in vivo efficacy in several MTAP-deficient preclinical cancer models.
Assuntos
Inibidores Enzimáticos , Proteína-Arginina N-Metiltransferases , Proteína-Arginina N-Metiltransferases/antagonistas & inibidores , Proteína-Arginina N-Metiltransferases/metabolismo , Humanos , Animais , Inibidores Enzimáticos/farmacologia , Inibidores Enzimáticos/química , Inibidores Enzimáticos/síntese química , Relação Estrutura-Atividade , Camundongos , Descoberta de Drogas , Linhagem Celular Tumoral , Antineoplásicos/farmacologia , Antineoplásicos/química , Antineoplásicos/síntese químicaRESUMO
Bfl-1 is overexpressed in both hematological and solid tumors; therefore, inhibitors of Bfl-1 are highly desirable. A DNA-encoded chemical library (DEL) screen against Bfl-1 identified the first known reversible covalent small-molecule ligand for Bfl-1. The binding was validated through biophysical and biochemical techniques, which confirmed the reversible covalent mechanism of action and pointed to binding through Cys55. This represented the first identification of a cyano-acrylamide reversible covalent compound from a DEL screen and highlights further opportunities for covalent drug discovery through DEL screening. A 10-fold improvement in potency was achieved through a systematic SAR exploration of the hit. The more potent analogue compound 13 was successfully cocrystallized in Bfl-1, revealing the binding mode and providing further evidence of a covalent interaction with Cys55.
RESUMO
Covalent hit identification is a viable approach to identify chemical starting points against difficult-to-drug targets. While most researchers screen libraries of <2k electrophilic fragments, focusing on lead-like compounds can be advantageous in terms of finding hits with improved affinity and with a better chance of identifying cryptic pockets. However, due to the increased molecular complexity, larger numbers of compounds (>10k) are desirable to ensure adequate coverage of chemical space. Herein, the approach taken to build a library of 12k covalent lead-like compounds is reported, utilizing legacy compounds, robust library chemistry, and acquisitions. The lead-like covalent library was screened against the antiapoptotic protein Bfl-1, and six promising hits that displaced the BIM peptide from the PPI interface were identified. Intriguingly, X-ray crystallography of lead-like compound 8 showed that it binds to a previously unobserved conformation of the Bfl-1 protein and is an ideal starting point for the optimization of Bfl-1 inhibitors.
Assuntos
Cisteína , Desenho de Fármacos , Bibliotecas de Moléculas Pequenas , Bibliotecas de Moléculas Pequenas/química , Bibliotecas de Moléculas Pequenas/farmacologia , Cristalografia por Raios X , Cisteína/química , Humanos , Proteínas Proto-Oncogênicas c-bcl-2/antagonistas & inibidores , Proteínas Proto-Oncogênicas c-bcl-2/química , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Relação Estrutura-Atividade , Modelos Moleculares , Antígenos de Histocompatibilidade MenorRESUMO
Herein, we report the identification and optimization of a series of potent inhibitors of EGFR Exon20 insertions with significant selectivity over wild-type EGFR. A strategically designed HTS campaign, multiple iterations of structure-based drug design (SBDD), and tactical linker replacement led to a potent and wild-type selective series of molecules and ultimately the discovery of 36. Compound 36 is a potent and selective inhibitor of EGFR Exon20 insertions and has demonstrated encouraging efficacy in NSCLC EGFR CRISPR-engineered H2073 xenografts that carry an SVD Exon20 insertion and reduced efficacy in a H2073 wild-type EGFR xenograft model compared to CLN-081 (5), indicating that 36 may have lower EGFR wild-type associated toxicity.
Assuntos
Receptores ErbB , Éxons , Inibidores de Proteínas Quinases , Receptores ErbB/antagonistas & inibidores , Receptores ErbB/genética , Receptores ErbB/metabolismo , Humanos , Animais , Relação Estrutura-Atividade , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/química , Inibidores de Proteínas Quinases/síntese química , Inibidores de Proteínas Quinases/uso terapêutico , Linhagem Celular Tumoral , Camundongos , Antineoplásicos/farmacologia , Antineoplásicos/química , Antineoplásicos/síntese química , Antineoplásicos/uso terapêutico , Descoberta de Drogas , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/patologia , Neoplasias Pulmonares/genética , Mutagênese Insercional , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/patologia , Ensaios Antitumorais Modelo de Xenoenxerto , MutaçãoRESUMO
The glycine to cysteine mutation at codon 12 of Kirsten rat sarcoma (KRAS) represents an Achilles heel that has now rendered this important GTPase druggable. Herein, we report our structure-based drug design approach that led to the identification of 14, AZD4747, a clinical development candidate for the treatment of KRASG12C-positive tumors, including the treatment of central nervous system (CNS) metastases. Building on our earlier discovery of C5-tethered quinazoline AZD4625, excision of a usually critical pyrimidine ring yielded a weak but brain-penetrant start point which was optimized for potency and DMPK. Key design principles and measured parameters that give high confidence in CNS exposure are discussed. During optimization, divergence between rodent and non-rodent species was observed in CNS exposure, with primate PET studies ultimately giving high confidence in the expected translation to patients. AZD4747 is a highly potent and selective inhibitor of KRASG12C with an anticipated low clearance and high oral bioavailability profile in humans.
Assuntos
Antineoplásicos , Neoplasias Pulmonares , Neoplasias , Animais , Humanos , Antineoplásicos/farmacologia , Proteínas Proto-Oncogênicas p21(ras)/genética , Neoplasias/tratamento farmacológico , Desenho de Fármacos , Glicina/uso terapêutico , Mutação , Neoplasias Pulmonares/tratamento farmacológicoRESUMO
ATAD2 is an epigenetic bromodomain-containing target which is overexpressed in many cancers and has been suggested as a potential oncology target. While several small molecule inhibitors have been described in the literature, their cellular activity has proved to be underwhelming. In this work, we describe the identification of a novel series of ATAD2 inhibitors by high throughput screening, confirmation of the bromodomain region as the site of action, and the optimization campaign undertaken to improve the potency, selectivity, and permeability of the initial hit. The result is compound 5 (AZ13824374), a highly potent and selective ATAD2 inhibitor which shows cellular target engagement and antiproliferative activity in a range of breast cancer models.
Assuntos
ATPases Associadas a Diversas Atividades Celulares/antagonistas & inibidores , Antineoplásicos/síntese química , Antineoplásicos/farmacologia , Neoplasias da Mama/tratamento farmacológico , Proteínas de Ligação a DNA/antagonistas & inibidores , Linhagem Celular Tumoral , Cristalografia por Raios X , Descoberta de Drogas , Ensaios de Seleção de Medicamentos Antitumorais , Feminino , Humanos , Modelos Moleculares , Bibliotecas de Moléculas Pequenas , Relação Estrutura-Atividade , Especificidade por Substrato , Ensaio Tumoral de Célula-TroncoRESUMO
The epidermal growth factor receptor (EGFR) harboring activating mutations is a clinically validated target in non-small-cell lung cancer, and a number of inhibitors of the EGFR tyrosine kinase domain, including osimertinib, have been approved for clinical use. Resistance to these therapies has emerged due to a variety of molecular events including the C797S mutation which renders third-generation C797-targeting covalent EGFR inhibitors considerably less potent against the target due to the loss of the key covalent-bond-forming residue. We describe the medicinal chemistry optimization of a biochemically potent but modestly cell-active, reversible EGFR inhibitor starting point with sub-optimal physicochemical properties. These studies culminated in the identification of compound 12 that showed improved cell potency, oral exposure, and in vivo activity in clinically relevant EGFR-mutant-driven disease models, including an Exon19 deletion/T790M/C797S triple-mutant mouse xenograft model.
Assuntos
Antineoplásicos/uso terapêutico , Receptores ErbB/antagonistas & inibidores , Neoplasias/tratamento farmacológico , Compostos Organofosforados/uso terapêutico , Inibidores de Proteínas Quinases/uso terapêutico , Pirimidinas/uso terapêutico , Animais , Antineoplásicos/síntese química , Antineoplásicos/metabolismo , Linhagem Celular Tumoral , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Receptores ErbB/genética , Receptores ErbB/metabolismo , Feminino , Humanos , Camundongos Nus , Camundongos SCID , Mutação , Compostos Organofosforados/síntese química , Compostos Organofosforados/metabolismo , Inibidores de Proteínas Quinases/síntese química , Inibidores de Proteínas Quinases/metabolismo , Pirimidinas/síntese química , Pirimidinas/metabolismo , Ratos , Ensaios Antitumorais Modelo de XenoenxertoRESUMO
The facile synthesis of both saturated and unsaturated tricyclic pyrrolo-pyridones starting from a single readily available, common monocyclic reagent has been developed. An intermolecular annulation via a tandem Buchwald-Hartwig/Heck reaction led to the synthesis of ß-carbolinones. The analogous semisaturated tricyclic pyrrolo-pyridones were prepared in good to excellent yields by sequential Buchwald-Hartwig and Fischer indole reactions. The methods feature mild reaction conditions and good functional group tolerance.
RESUMO
Recently we have documented research efforts aimed at new classes of oxetanes as well as spiroheteroalicyclic ring systems (which we have termed 'Compact Modules') designed to expand the palette of tailored module scaffolds available to medicinal chemists, which constitute an important role for synthetic chemistry in the drug discovery process. An essential component for this process is to provide access to specific molecular topologies with functional group diversity, essential for generating leads that discriminate among biological targets, therefore promoting selectivity and enhancing the safety profile of the final clinical candidates.
Assuntos
Azetidinas/química , Éteres Cíclicos/química , Compostos de Espiro/química , Azetidinas/síntese química , Descoberta de Drogas , Éteres Cíclicos/síntese química , Estrutura Molecular , Compostos de Espiro/síntese químicaRESUMO
The preparation of versatile azaspiro[3.3]heptanes carrying multiple exit vectors is disclosed. Expedient synthetic routes enable the straightforward access to these novel modules that are expected to have significance in drug discovery and design.
Assuntos
Compostos Aza/síntese química , Heptanos/síntese química , Compostos de Espiro/síntese química , Éteres Cíclicos/química , Modelos Moleculares , Estrutura MolecularRESUMO
The syntheses of a variety of novel angular azaspiro[3.3]heptanes are reported. gem-Difluoro and gem-dimethyl variants of the angular 1,6-diazaspiro[3.3]heptane module were prepared in high yields using efficient sequences. Additionally, a practical one-pot synthesis of 5-oxo-2-azaspiro[3.3]heptanes and subsequent conversions into functionalized derivatives are described. The methods reported are amenable to the synthesis of these building blocks for drug discovery as members of a library or individually on a preparative scale.
Assuntos
Azetidinas/síntese química , Heptanos/síntese química , Compostos de Espiro/química , Compostos de Espiro/síntese química , Azetidinas/química , Heptanos/química , Estrutura Molecular , EstereoisomerismoRESUMO
Straightforward access toward previously unreported substituted, heterocyclic spiro[3.3]heptanes is disclosed. These spirocyclic systems may be considered as alternatives to 1,3-heteroatom-substituted cyclohexanes, which are otherwise insufficiently stable to allow their use in drug discovery. Conformational details are discussed on the basis of X-ray crystallographic structures.
Assuntos
Heptanos/síntese química , Cristalografia por Raios X , Heptanos/química , Modelos Moleculares , Estrutura MolecularRESUMO
Tandem carbenoid generation, ylide formation and [2,3]-rearrangement is a powerful method for the construction of bicyclic and linearly fused tricyclic systems containing a seven-membered ring.
Assuntos
Compostos Macrocíclicos/síntese química , Metano/análogos & derivados , Oxigênio/química , Produtos Biológicos/química , Hidrocarbonetos/química , Compostos Macrocíclicos/química , Metano/química , Estrutura Molecular , Fatores de TempoRESUMO
The regioselective head-to-head [2 + 2] cyclodimerization of allenyl boronate catalyzed by the ruthenium catalyst [Cp*RuCl(COD)] leads to a novel diboronated 1,3-dimethylenecyclobutane. Consecutive palladium-catalyzed C-C couplings open a route to novel disubstituted 1,3-dimethylenecyclobutane species. The X-ray crystalline structure of the phenyl-substituted 1,3-dimethylenecyclobutane is provided.