Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Front Microbiol ; 13: 858440, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35464952

RESUMO

Unlike other bacteria, cell growth in rhizobiales is unipolar and asymmetric. The regulation of cell division, and its coordination with metabolic processes is an active field of research. In Rhizobium etli, gene RHE_PE00024, located in a secondary chromosome, is essential for growth. This gene encodes a predicted hybrid histidine kinase sensor protein, participating in a, as yet undescribed, two-component signaling system. In this work, we show that a conditional knockdown mutant (cKD24) in RHE_PE00024 (hereby referred as rdsA, after rhizobium division and shape) generates a striking phenotype, where nearly 64% of the cells present a round shape, with stochastic and uncoordinated cell division. For rod-shaped cells, a large fraction (12 to 29%, depending on their origin) present growth from the old pole, a sector that is normally inactive for growth in a wild-type cell. A fraction of the cells (1 to 3%) showed also multiple ectopic polar growths. Homodimerization of RdsA appears to be required for normal function. RNAseq analysis of mutant cKD24 reveals global changes, with downregulated genes in at least five biological processes: cell division, wall biogenesis, respiration, translation, and motility. These modifications may affect proper structuring of the divisome, as well as peptidoglycan synthesis. Together, these results indicate that the hybrid histidine kinase RdsA is an essential global regulator influencing cell division and cell shape in R. etli.

2.
J Med Microbiol ; 70(9)2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34590996

RESUMO

The S. Typhi leuO gene, which codes for the LysR-type transcriptional regulator LeuO, contains five forward promoters named P3, P1, P2, P5 and P4, and two reverse promoters, P6 and P7. The activity of the forward promoters was revealed by primer extension using gene reporter fusions in an S. Typhi hns lrp mutant strain. Likewise, the activity of the reverse promoters was revealed in an hns background. Derepression of the transcription of the chromosomal gene was confirmed by RT-PCR in the hns lrp mutant. The leuOP1 transcriptional reporter fusion, which contained only the major P1 promoter, had a lower expression in a relA spoT mutant strain, indicating that the steady-state levels of the (p)ppGpp alarmone positively regulate it. In contrast, the leuOP3, leuOP5P4, leuOP6 and leuOP7 transcriptional fusions were derepressed in the relA spoT background, indicating that the alarmone has a negative effect on their expression. Thus, the search for genetic regulators and environmental cues that would differentially derepress leuO gene expression by antagonizing the action of the H-NS and Lrp nucleoid-associated proteins, or that would fine-tune the expression of the various promoters, will further our understanding of the significance that multiple promoters have in the control of LeuO expression.


Assuntos
Proteínas de Bactérias/genética , Regiões Promotoras Genéticas , Salmonella typhi/genética , Fatores de Transcrição/genética , Regiões Promotoras Genéticas/genética , Regiões Promotoras Genéticas/fisiologia , RNA Bacteriano/isolamento & purificação , Reação em Cadeia da Polimerase Via Transcriptase Reversa
3.
J Bacteriol ; 196(12): 2143-54, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24659766

RESUMO

LeuO is a LysR-type transcriptional regulator (LTTR) that has been described to be a global regulator in Escherichia coli and Salmonella enterica, since it positively and negatively regulates the expression of genes involved in multiple biological processes. LeuO is comprised of an N-terminal DNA-binding domain (DBD) with a winged helix-turn-helix (wHTH) motif and of a long linker helix (LH) involved in dimerization that connects the DBD with the C-terminal effector-binding domain (EBD) or regulatory domain (RD; which comprises subdomains RD-I and RD-II). Here we show that the oligomeric structure of LeuO is a tetramer that binds with high affinity to DNA. A collection of single amino acid substitutions in the LeuO DBD indicated that this region is involved in oligomerization, in positive and negative regulation, as well as in DNA binding. Mutants with point mutations in the central and C-terminal regions of RD-I were affected in transcriptional activation. Deletion of the RD-II and RD-I C-terminal subdomains affected not only oligomerization but also DNA interaction, showing that they are involved in positive and negative regulation. Together, these data demonstrate that not only the C terminus but also the DBD of LeuO is involved in oligomer formation; therefore, each LeuO domain appears to act synergistically to maintain its regulatory functions in Salmonella enterica serovar Typhi.


Assuntos
Proteínas de Bactérias/metabolismo , DNA Bacteriano/metabolismo , Regulação Bacteriana da Expressão Gênica/fisiologia , Salmonella typhi/metabolismo , Transcrição Gênica , Sequência de Aminoácidos , Proteínas de Bactérias/genética , Deleção de Genes , Dados de Sequência Molecular , Mutagênese Sítio-Dirigida , Ligação Proteica , Conformação Proteica , Salmonella typhi/genética
4.
Front Immunol ; 5: 581, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25566242

RESUMO

Salmonella are facultative intracellular pathogens. Salmonella infection occurs mainly by expression of two Salmonella pathogenicity Islands (SPI-1 and SPI-2). SPI-1 encodes transcriptional factors that participate in the expression of virulence factors encoded in the island. However, there are transcriptional factors encoded outside the island that also participate in the expression of SPI-1-encoded genes. Upon infection, bacteria are capable of avoiding the host immune response with several strategies that involve several virulence factors under the control of transcriptional regulators. Interestingly, LeuO a transcriptional global regulator which is encoded outside of any SPI, is proposed to be part of a complex regulatory network that involves expression of several genes that help bacteria to survive stress conditions and, also, induces the expression of porins that have been shown to be immunogens and can thus be considered as antigenic candidates for acellular vaccines. Hence, the understanding of the LeuO regulon implies a role of bacterial genetic regulation in determining the host immune response.

5.
Mol Microbiol ; 66(3): 727-43, 2007 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-17908208

RESUMO

The ompS1 gene encodes a quiescent porin in Salmonella enterica. We analysed the effects of H-NS and StpA, a paralogue of H-NS, on ompS1 expression. In an hns single mutant expression was derepressed but did not reach the maximum level. Expression in an stpA single mutant showed the same low repressed level as the wild type. In contrast, in an hns stpA background, OmpS1 became abundant in the outer membrane. The expression of ompS1 was positively regulated by LeuO, a LysR-type quiescent regulator that has been involved in pathogenesis. Upon induction of the cloned leuO gene into the wild type, ompS1 was completely derepressed and the OmpS1 porin was detected in the outer membrane. LeuO activated the P1 promoter in an OmpR-dependent manner and P2 in the absence of OmpR. LeuO bound upstream of the regulatory region of ompS1 overlapping with one nucleation site of H-NS and StpA. Our results are thus consistent with a model where H-NS binds at a nucleation site and LeuO displaces H-NS and StpA.


Assuntos
Proteínas de Bactérias/genética , Proteínas de Ligação a DNA/genética , Regulação Bacteriana da Expressão Gênica , Salmonella enterica/genética , Proteínas de Bactérias/metabolismo , Sequência de Bases , Western Blotting , Pegada de DNA/métodos , Proteínas de Ligação a DNA/metabolismo , Desoxirribonuclease I/metabolismo , Ensaio de Desvio de Mobilidade Eletroforética , Modelos Biológicos , Mutação , Porinas/genética , Porinas/metabolismo , Regiões Promotoras Genéticas/genética , Ligação Proteica , Salmonella enterica/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA