Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
1.
Heliyon ; 10(3): e25621, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38863879

RESUMO

Enset (Ensete ventricosum (Welw.) Cheesman) is an indigenous multipurpose plant in Ethiopia. More than 20 % of people in Ethiopia rely on enset for their subsistence livelihood. Its fermentation produces a starchy food named Kocho, which is yet poorly studied. In this study, physicochemical and microbial community dynamics of Kocho fermented from different enset varieties (Maziya, Genna, and Arkiya) were collected at Dawro Zone (Southern Ethiopia). Samples were collected at various fermentation times (days 1-60) for physicochemical and microbial (culture-dependent and culture-independent) characterization. Results showed that increasing fermentation time has a significantly strong positive (R2 = 0.768, p = 0.004) correlation between titrable acidity, and a significantly strong negative association with pH (R2 = -0.715, p = 0.009), moisture (R2 = -0.982, p < 0.05), ash (R2 = -0.932, p < 0.05), fat (R2 = -0.861, p < 0.05), fiber (R2 = -0.981, p < 0.05) and carbohydrate (R2 = -0.994, p < 0.001) contents. An increasing or decreasing trend of physicochemical parameters observed during enset fermentation is significantly associated with microbial community dynamics. Shifts of microbial community observed during culture-dependent analysis were also confirmed by metagenomic results. During fermentation, Firmicutes (39-68 %) > Proteobacteria (7-53 %) > Cyanobacteria (7-24 %) were dominant phyla in the three enset varieties. Gamma (traditional starter culture) is dominated by Lactobacillus plantrum and Lactobacillus manihotivorans most probably the two species that play a significant role in initiating enset fermentation.

2.
Heliyon ; 9(6): e16857, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37313163

RESUMO

In this research, the transformation and toxicity of Reactive Red 141 and 239 biodegraded under anaerobic-aerobic conditions as well as metagenomic analysis of Reactive Red 239 degrading microbial consortia collected from Shala Hot spring were investigated. Toxicity of dyes before treatment and after treatment on three plants, fish and microorganisms were done. A halotolerant and thermo-alkaliphilic bacterial consortia decolorizing azo dyes (>98% RR 141 and > 96% RR 239 in 7 h) under optimum conditions of salt concentration (0.5%), temperature (55 °C) and pH (9), were used. Toxicity effect of untreated dyes and treated dyes in Tomato > Beetroot > Cabbage plants, while the effect was Leuconostoc mesenteroides > Lactobacillus plantarum > Escherichia coli in microorganisms. Among fishes, the toxicity effect was highest in Oreochromis niloticus followed by Cyprinus carpio and Clarias gariepinus. The three most dominant phyla that could be in charge of decolorizing RR 239 under anaerobic-aerobic systems were Bacteroidota (22.6-29.0%), Proteobacteria (13.5-29.0%), and Chloroflexi (8.8-23.5%). At class level microbial community structure determination, Bacteroidia (18.9-27.2%), Gammaproteobacteria (11.0-15.8%), Alphaproteobacteria (2.5-5.0%) and Anaerolineae (17.0-21.9%) were dominant classes. The transformation of RR 141 and RR 239 into amine compounds were proposed via high performance liquid chromatography-mass spectroscopy (HPLC/MS) and fourier transform infrared spectroscopy (FT-IR). Overall, dye containing wastewaters treated under anaerobic-aerobic systems using thermo-alkaliphilic microbial consortia were found to be safe to agricultural (fishes and vegetables) purposes.

3.
Environ Res ; 231(Pt 1): 116047, 2023 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-37149031

RESUMO

In recent years, biological sulfur (bio-S) was employed in sulfur autotrophic denitrification (SAD) in which autotrophic Thiobacillus denitrificans and heterotrophic Stenotrophomonas maltophilia played a key role. The growth pattern of T.denitrificans and S.maltophilia exhibited a linear relationship between OD600 and CFU when OD600 < 0.06 and <0.1, respectively. When S.maltophilia has applied alone, the NorBC and NosZ were undetected, and denitrification was incomplete. The DsrA of S.maltophilia could produce sulfide as an alternative electron donor for T.denitrificans. Even though T.denitrificans had complete denitrification genes, its efficiency was low when used alone. The interaction of T.denitrificans and S.maltophilia reduced nitrite accumulation, leading to complete denitrification. A sufficient quantity of S.maltophilia may trigger the autotrophic denitrification activity of T.denitrificans. When the colony-forming units (CFU) ratio of S.maltophilia to T.denitrificans was reached at 2:1, the highest denitrification performance was achieved at 2.56 and 12.59 times higher than applied alone. This research provides a good understanding of the optimal microbial matching for the future application of bio-S.


Assuntos
Desnitrificação , Elétrons , Enxofre , Processos Autotróficos , Sulfetos , Reatores Biológicos , Nitrogênio
4.
Chemosphere ; 330: 138703, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37100253

RESUMO

The use of natural agro-industrial materials as suspended fillers (SFs) in floating treatment wetlands (FTWs) to enhance nutrient removal performance has recently been gaining significant attention. However, the knowledge concerning the nutrient removal performance enhancement by different SFs (alone and in mixtures) and the major removal pathways is so far inadequate. The current research, for the first time, carried out a critical analysis using five different natural agro-industrial materials (biochar, zeolite, alum sludge, woodchip, flexible solid packing) as SFs in various FTWs of 20 L microcosm tanks, 450 L outdoor mesocosms, and a field-scale urban pond treating real wastewater over 180 d. The findings demonstrated that the incorporation of SFs in FTWs enhanced the removal performance of total nitrogen (TN) by 20-57% and total phosphorus (TP) by 23-63%. SFs further enhanced macrophyte growth and biomass production, leading to considerable increases in nutrient standing stocks. Although all the hybrid FTWs showed acceptable treatment performances, FTWs set up with mixtures of all five SFs significantly enhanced biofilm formation and enriched the abundances of the microbial community related to nitrification and denitrification processes, supporting the detected excellent N retention. N mass balance assessment demonstrated that nitrification-denitrification was the major N removal pathway in reinforced FTWs, and the high removal efficiency of TP was attributable to the incorporation of SFs into the FTWs. Nutrient removal efficiencies ranked in the following order among the various trials: microcosm scale (TN: 99.3% and TP: 98.4%) > mesocosm scale (TN: 84.0% and TP: 95.0%) > field scale (TN: -15.0-73.7% and TP: -31.5-77.1%). These findings demonstrate that hybrid FTWs could be easily scaled up for the removal of pollutants from eutrophic freshwater systems over the medium term in an environmentally-friendly way in regions with similar environmental conditions. Moreover, it demonstrates hybrid FTW as a novel way of disposing of significant quantities of wastes, showing a win-win means with a huge potential for large-scale application.


Assuntos
Esgotos , Poluentes Químicos da Água , Resíduos Industriais , Biodegradação Ambiental , Áreas Alagadas , Poluentes Químicos da Água/análise , Fósforo/metabolismo , Nitrogênio/análise , Nutrientes , Eliminação de Resíduos Líquidos
5.
J Hazard Mater ; 441: 129826, 2023 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-36084456

RESUMO

Metastasis includes tumor invasion and migration and underlies over 90% of cancer mortality. The metastatic effects of environmental carcinogens raised serious health concerns. However, the underlying mechanisms remained poorly studied. In the present study, an in vivo RasV12/lgl-/- model of the fruitfly, Drosophila melanogaster, with an 8-day exposure was employed to explore the metastatic effects of 3,3',4,4',5-pentachlorobiphenyl (PCB126), perfluorooctanoic acid (PFOA) and cadmium chloride (CdCl2). At 1.0 mg/L, PCB126, PFOA, and CdCl2 significantly increased tumor invasion rates by 1.32-, 1.33-, and 1.29-fold of the control, respectively. They also decreased the larval body weight and locomotion behavior. Moreover, they commonly disturbed the expression levels of target genes in MAPK and UPR pathways, and their metastatic effects were significantly abolished by the addition of p38 inhibitor (SB203580), JNK inhibitor (SP600125) and IRE1 inhibitor (KIRA6). Notably, the addition of the IRE inhibitor significantly influenced sna/E-cad pathway which is essential in both p38 and JNK regulations. The results demonstrated an essential role of sna/E-cad in connecting the effects of carcinogens on UPR and MAPK regulations and the resultant metastasis.


Assuntos
Carcinógenos Ambientais , Neoplasias , Animais , Cloreto de Cádmio , Caprilatos , Drosophila , Drosophila melanogaster , Fluorocarbonos , Proteínas Serina-Treonina Quinases , Transdução de Sinais
6.
J Environ Manage ; 323: 116235, 2022 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-36113293

RESUMO

Wastewaters in textile industry are mainly characterized by higher pH, color, salt and chemical oxygen demand (COD) values, which are environmentally undesirable. Among these textile effluent characteristics, color removal is the most challenging task. In this study, the potential of Rift Valley halotolerant and thermo-alkaliphilic microbial consortia (collected from Shala hot spring located in Ethiopia) for azo dye biodegradation under anaerobic-aerobic conditions were evaluated. Optimization and microbial diversity analysis were done using Reactive Red 141. Under optimum conditions of pH (9), temperature (55 °C), salinity (0.5%), and nutrients, microbial consortia can remove >98% color and 92.7 ± 7.3% COD under anaerobic and aerobic conditions, respectively. In addition, the consortia was capable of decolorizing initial dye concentrations of 100-1000 mg/L, and various dye types including Everzol Blue LX, RY 84, RR 239, RB 198 and RY 700. The 16S rRNA gene sequence results showed that Bacteroidetes (25.3%) > Proteobacteria (21.0%) > Chloroflexi (18.5%) > Halobacterota (6.2%) dominant phyla. Based on the findings, non-color effluent adapted Rift Valley halotolerant and thermo-alkaliphilic bacterial consortia can be a potential candidate for bioremediation of textile and other industries characterized by higher salinity, temperature and pH.


Assuntos
Compostos Azo , Consórcios Microbianos , Anaerobiose , Compostos Azo/metabolismo , Biodegradação Ambiental , Corantes/metabolismo , RNA Ribossômico 16S/genética , Indústria Têxtil , Águas Residuárias/química
7.
Environ Res ; 214(Pt 3): 114086, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35970377

RESUMO

Currently, the depletion of natural resources and contamination of the surrounding environment demand a paradigm shift to resource recycling and reuse. In this regard, phosphorus (P) is a model nutrient that possesses the negative traits of depletion (will be exhausted in the next 100 years) and environmental degradation (causes eutrophication and climate change), and this has prompted the scientific community to search for options to solve P-related problems. To date, P recovery in the form of struvite from wastewater is one viable solution suggested by many scholars. Struvite can be recovered either in the form of NH4-struvite (MgNH4PO4•6H2O) or K-struvite (MgKPO4•6H2O). From struvite, K (MgKPO4•6H2O) and N (MgNH4PO4•6H2O) are important nutrients for plant growth, but N is more abundant in the environment than K (the soil's most limited nutrient), which requires a systematic approach during P recovery. Although K-struvite recovery is a promising approach, information related to its crystallization is deficient. Here, we present the general concept of P recovery as struvite and details about K-struvite, such as the source of nutrients, factors (pH, molar ratio, supersaturation, temperature, and seeding), advantages (environmental, economic, and social), disadvantages (heavy metals, pathogenic organisms, and antibiotic resistance genes), and challenges (scale-up and acceptance). Overall, this study provides insights into state-of-the-art K-struvite recovery from wastewater as a potential slow-release fertilizer that can be used as a macronutrient (P-K-Mg) source for plants as commercial grade-fertilizers.


Assuntos
Fósforo , Águas Residuárias , Fertilizantes , Fosfatos/química , Fósforo/química , Estruvita , Eliminação de Resíduos Líquidos , Águas Residuárias/química
8.
J Environ Manage ; 302(Pt B): 114084, 2022 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-34773777

RESUMO

Bacterial wilt of enset caused by Xanthomonas campestris is a devastating disease in Ethiopia, where enset is domesticated and served as a staple food for about 20 million people in the country. While enset is infected by bacteria, it shows different wilting stages. However, the microbial community shifts at the different stages of enset infection and associated physicochemical parameter changes remain poorly understood. This study was aimed to visualize the proportion of enset wilt bacterium from other microbial community and its association with physicochemical parameter at different states of enset health. Soil and enset (zero, first, second and third stages) samples were collected from three districts in Gamo Highlands for physicochemical and biological (culture dependent and16S rRNA gene sequence) analysis. The results of culture dependent analysis which has been complemented by 16S rRNA gene sequence confirmed that increasing trends were observed for Xanthomonadaceae, Pseudomonadaceae, Lactobacillaceae and Flavobacteriaceae, while Bacillaceae and Enterobacteriaceae showed progressive decrease from zero to the third stage. Particularly, the 16S rRNA data showed that Xanthomonadaceae increased significantly from zero to different (2.5 × 102 times at the onset of disease and 1.0-2.0 × 104 times at the second and third) stages of enset infection. Most physicochemical results showed that a decreasing trends from zero to third stage, while few parameters are showing an increasing trend. Moisture content (R2 ≥ 0.951, P ≤ 0.049) of the soil and plant samples positively influenced Xanthomonas abundance, while this bacterium showed a strongly negative significant correlation with pH (R2 ≥ -0.962, P ≤ 0.038), temperature (R2 ≥ -0.958, P ≤ 0.042), OM (R2 ≥ -0.952, P ≤ 0.048), and TN (R2 ≥ -0.951, P ≤ 0.049). A strongly negative significant correlation (R2 ≥ -0.948, P ≤ 0.050) was also observed between Xanthomonas and nutrients (K, Mg, Ca, and Cu). Overall, this study implies that different environmental factors found a key driving force of Xanthomonas proportional increment from low abundance at zero stage to higher abundance at the last stage of enset infection suggesting that considering these factors help to design an effective enset disease management strategy, for which further studies will be needed.


Assuntos
Microbiota , Musaceae , Bactérias/genética , Humanos , RNA Ribossômico 16S/genética , Solo , Microbiologia do Solo
9.
Chemosphere ; 280: 130926, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34162108

RESUMO

The present work provides the first attempt of using manganese dioxide loaded poly(sodium acrylate) hydrogel (MnO2@PSA) to address potential threats posed by oxytetracycline (OTC) antibiotics in aqueous environment. The MnO2@PSA was prepared via a facile approach and demonstrated enhanced removal performance even under extremely high concentrations of OTC. The outstanding performance exhibited by MnO2@PSA was attributed to synergetic effects of adsorption oxidative degradation. The synthesized composite was characterized evaluated under varying conditions. The adsorption pH was optimized at pH 5, at which the removal efficiency OTC was reached 91.46%. According to the kinetics study, the pseudo-second-order kinetic model was the best to explain the adsorption data, implying the interaction mechanisms were dominated by chemisorption. The Langmuir isotherm model was the best to explain the isotherm data, and the corresponding maximum adsorbed amount of OTC was 1150.4 mg g-1. The MnO2@PSA was highly selective for OTC adsorption and degradation under the presence of natural organic matter and common environmental metal ions. The oxidative degradation study indicated that OTC molecules were structurally degraded into 15 intermediate products via six reaction pathways. Both the theoretical models and spectroscopic methods demonstrated the removal mechanism of OTC onto MnO2@PSA was governed by ion exchange, cation-π bonding, hydrogen-bonding, and π-π electron donor-acceptor. Overall, MnO2@PSA is an excellent and environmentally sustainable material to remove OTC from water and wastewater via the combined effects of adsorption and oxidative degradation.


Assuntos
Oxitetraciclina , Poluentes Químicos da Água , Purificação da Água , Adsorção , Antibacterianos , Hidrogéis , Concentração de Íons de Hidrogênio , Compostos de Manganês , Estresse Oxidativo , Óxidos , Água , Poluentes Químicos da Água/análise
10.
Environ Res ; 197: 111029, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33744267

RESUMO

Sulfur autotrophic denitrification (SAD) process, as an alternative to heterotrophic denitrification (HD) filter, receives growing interest in polishing the effluent from secondary sewage treatment. Although individual studies have indicated several advantages of SAD over HD, rare study has compared these two systems under identical condition and by using real secondary effluent. In this study, two small pilot scale filters (SAD and HD) were designed with identical configuration and operated parallelly by feeding the real secondary effluent from a WWTP. The results showed SAD filter can be started up without the addition of soluble electron donor, although the time (14 days) was about 3 times longer than that of HD filter. The nitrate removal rate of SAD filter at HRT of 1.4 h was measured as 0.268 ± 0.047 kg N/(m3∙d). Similar value was observed in HD filter with supplementing 90 mg/L COD. The COD concentration of effluent always kept lower than that of influent in SAD filter but not in HD filter. In addition, SAD filter could maintain a stable denitrification performance without backwash for 15 days, while decline of nitrate removal rate was observed in HD filter just 2 days after stopping the backwash. This different behavior was further confirmed as the SAD filter had a better hydraulic flow pattern. Analysis according to high-throughput 16S rRNA gene-based Illumina MiSeq sequencing clearly showed the microbial community evolution and differentiation among the samples of seed sludge, SAD and HD filters. Finally, the economic assessment was carried out, showing the operation cost of SAD filter was over 50% lower than that of HD filter.


Assuntos
Desnitrificação , Hidrodinâmica , Reatores Biológicos , Nitratos , Nitrogênio , RNA Ribossômico 16S/genética , Enxofre
11.
J Environ Manage ; 287: 112297, 2021 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-33706088

RESUMO

Pyridine contamination poses a significant threat to human and environmental health. Due to the presence of nitrogen atom in the pyridine ring, the pi bond electrons are attracted toward it and make difficult for pyridine treatment with biological and chemical methods. In this study, coupling Fenton treatment with different biological process was designed to enhance pyridine biotransformation and further mineralization. After Fenton oxidation process optimized, pretreated pyridine was evaluated under three biological (anaerobic, aerobic and microaerobic) operating conditions. Under optimum Fenton oxidation, pyridine (30-75%) and TOC (5-25%) removal efficiencies were poor. Biological process alone also showed insignificant removal efficiency, particularly anaerobic (pyridine = 8.2%; TOC = 5.3%) culturing condition. However, combining Fenton pretreatment with biological process increased pyridine (93-99%) and TOC (87-93%) removals, suggesting that hydroxyl radical generated during Fenton oxidation enhanced pyridine hydroxylation and further mineralization in the biological (aerobic > microaerobic > anaerobic) process. Intermediates were analyzed with UPLC-MS and showed presence of maleic acid, pyruvic acid, glutaric dialdehyde, succinic semialdehyde and 4-formylamino-butyric acid. High-throughput sequencing analysis also indicated that Proteobacteria (35-43%) followed by Chloroflexi (10.6-24.3%) and Acidobacteria (8.0-29%) were the dominant phyla detected in the three biological treatment conditions. Co-existence of dominant genera under aerobic/microaerobic (Nitrospira > Dokdonella > Caldilinea) and anaerobic (Nitrospira > Caldilinea > Longilinea) systems most probably play significant role in biotransformation of pyridine and its intermediate products. Overall, integrating Fenton pretreatment with different biological process is a promising technology for pyridine treatment, especially the combined system enhanced anaerobic (>10 times) microbial pyridine biotransformation activity.


Assuntos
Águas Residuárias , Poluentes Químicos da Água , Biotransformação , Cromatografia Líquida , Humanos , Peróxido de Hidrogênio , Oxirredução , Piridinas , Espectrometria de Massas em Tandem , Eliminação de Resíduos Líquidos , Poluentes Químicos da Água/análise
12.
J Hazard Mater ; 414: 125484, 2021 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-33647609

RESUMO

The environmental spread of antibiotic resistance genes (ARGs) from the direct application of traditional biological treatment systems for antibiotics in water is a potential public health threat. UV photolysis has been proved to be an efficient pretreatment method for antibacterial activity elimination, but the fate of antibiotic resistome in subsequent bioreactors fed with pretreated florfenicol (FLO) in synthetic wastewater is still unknown. Antibacterial activity in synthetic wastewater was effectively eliminated by UV irradiation pretreatment, and the diversity and abundance of detected ARGs in both aerobic and anaerobic bioreactors were significantly lower than those without pretreatment. Meanwhile, UV irradiation pretreatment shaped the structure and composition of sludge microbial communities in the subsequent bioreactors closer to those of the FLO-free groups. The relative abundances of Pseudomonas and Escherichia-Shigella working as the potential hosts of ARGs were significantly reduced in aerobic and anaerobic bioreactors, respectively. The significantly positive correlation between floR and intI1 and the decrease of intI1 abundance in UV photolytic pretreatment groups indicated that the horizontal transfer of floR was decreased. The study provides new insights into the effect of preferential UV photolysis as a pretreatment method on the source control of antibiotic resistome in subsequent biological treatment process.


Assuntos
Antibacterianos , Genes Bacterianos , Antibacterianos/farmacologia , Resistência Microbiana a Medicamentos , Fotólise , Esgotos , Águas Residuárias/análise
13.
Chemosphere ; 272: 129902, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33592510

RESUMO

In this study, hydrous manganese dioxide (HMO) modified poly(sodium acrylate) (PSA) hydrogel was produced for the first time to remove tetracycline(TC) and lead(Pb(II)) from water. The as-prepared composite was characterized using various techniques, such as SEM-EDS, FTIR, XRD, BET, and XPS, to elucidate the successful loading of HMO and analyze subsequent sorption mechanisms. Different influencing parameters such as adsorbent dose, initial concentration of adsorbates, reaction time, solution pH, and temperature were also investigated. The adsorption kinetic studies of both TC and Pb(II) removal indicated that equilibrium was achieved within 12 h, with respective removal rates of 91.9 and 99.5%, and the corresponding adsorption data were fitted to the second-order kinetics model. According to the adsorption isotherm studies, the sorption data of TC best fitted to the Langmuir isotherm model while the adsorption data of Pb(II) were explained by the Freundlich isotherm model. The maximum adsorption capacities of both TC and Pb(II) were found to be 475.8 and 288.7 mg/g, respectively, demonstrating excellent performances of the adsorbent. The uptake capacity of PSA-HMO was significantly influenced by the level of solution pH, in which optimum adsorption amount was realized at pH 4.0 in the TC and Pb(II) systems, respectively. Thermodynamic studies showed the process of TC and Pb(II) adsorptions were endothermic and spontaneous. Overall this study elucidated that PSA-HMO composite can be a promising candidate for antibiotics and heavy metal removal in water treatment applications.


Assuntos
Poluentes Químicos da Água , Purificação da Água , Resinas Acrílicas , Adsorção , Antibacterianos , Hidrogéis , Concentração de Íons de Hidrogênio , Cinética , Chumbo , Compostos de Manganês , Óxidos , Termodinâmica , Água
14.
Bioresour Technol ; 322: 124430, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33383476

RESUMO

Biochar was utilized to intensify constructed wetland (CW) for further organic and nitrogen removal from secondary wastewater. Four sets of non-aerated biochar amended vertical flow CW (VFCW) were developed to investigate the synergistic effects of biochar and microbes on pollutant removal. Results showed that the average COD and nitrogen removal efficiencies of VFCW1 (with 1% w/w biochar with microbe and plants) achieved 89.1 ± 5.6% and 90.2 ± 3.1% respectively, and their corresponding removal rates of 10.2 ± 0.8 mg-COD/(m3.d) and 3.57 ± 0.3 mg-TN/(m3.d) which were 35 and 52.3% higher than control. The biochar's dissolved organic carbon release in VFCWs indicated that water and acidic media portray the optimum conditions for nitrogen removal. The 16S RNA gene sequencing analysis indicated that in the biochar-amended VFCWs, bacterial phylum Proteobacteria (24.13-51.95%) followed by Chloroflexi (5.64-25.01%), Planctomycetes (8.48-14.43%), Acidobacteria (2.29-11.65%) were abundantly enhanced. Conclusively, incorporating biochar in non-aerated VFCWs is an efficient technique for enhancing nitrogen removal from secondary effluent.


Assuntos
Microbiota , Áreas Alagadas , Carbono , Carvão Vegetal , Desnitrificação , Nitrogênio/análise , Eliminação de Resíduos Líquidos , Águas Residuárias
15.
J Environ Sci (China) ; 101: 428-439, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33334536

RESUMO

Currently, vehicle-related particulate matter is the main determinant air pollution in the urban environment. This study was designed to investigate the level of fine (PM2.5) and coarse particle (PM10) concentration of roadside vehicles in Addis Ababa, the capital city of Ethiopia using artificial neural network model. To train, test and validate the model, the traffic volume, weather data and particulate matter concentrations were collected from 15 different sites in the city. The experimental results showed that the city average 24-hr PM2.5 concentration is 13%-144% and 58%-241% higher than air quality index (AQI) and world health organization (WHO) standards, respectively. The PM10 results also exceeded the AQI (54%-65%) and WHO (8%-395%) standards. The model runs using the Levenberg-Marquardt (Trainlm) and the Scaled Conjugate Gradient (Trainscg) and comparison were performed, to identify the minimum fractional error between the observed and the predicted value. The two models were determined using the correlation coefficient and other statistical parameters. The Trainscg model, the average concentration of PM2.5 and PM10 exhaust emission correlation coefficient were predicted to be (R2 = 0.775) and (R2 = 0.92), respectively. The Trainlm model has also well predicted the exhaust emission of PM2.5 (R2 = 0.943) and PM10 (R2 = 0.959). The overall results showed that a better correlation coefficient obtained in the Trainlm model, could be considered as optional methods to predict transport-related particulate matter concentration emission using traffic volume and weather data for Ethiopia cities and other countries that have similar geographical and development settings.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Poluentes Atmosféricos/análise , Poluição do Ar/análise , Cidades , Monitoramento Ambiental , Etiópia , Redes Neurais de Computação , Tamanho da Partícula , Material Particulado/análise , Emissões de Veículos/análise
16.
Sci Total Environ ; 761: 143302, 2021 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-33187701

RESUMO

Available freshwater scarcity significantly affects sustainable food production for the rapidly growing population. This problem has forced people in most parts of the world to use wastewater as a viable solution. However, wastewater reuse has some deleterious effects on human and environmental health. This study was designed to investigate the health risks (HRs) of heavy metals (HMs) from vegetables irrigated with untreated and treated wastewater. The composite wastewater was collected at various sites in Arba Minch town and subjected to aerobic-anoxic treatment. Treated and untreated wastewater (UTW) was used to irrigate vegetables (lettuce, cabbage and tomato), and HM results were compared with the control (tap water) and standards. Water, soil and vegetables were investigated for various physical and chemical properties. Human health effects due to vegetable consumption were analyzed using HR- index (HRI), target hazard quotient (THQ) and hazard index (HI). The results revealed that most of the water quality indexes were significantly enhanced after aerobic-anoxic treatment, suggesting that wastewater collected from different sites was suitable for biodegradation. Soil physicochemical analyses also showed that pH, cation exchange capacity, organic carbon and organic matter were higher for UTW irrigated soil. Heavy metal concentrations were relatively greater in soils than water used for irrigation purposes and vegetables. The HM concentration in vegetables was higher for UTW than for treated and tap water irrigated vegetables. In vegetables, the order of HM content was Fe > Mn > Zn > Pb > Cu > Cd. Tomato followed by cabbage and lettuce accumulated significant amount of HMs (Fe > Mn > Zn > Pb > Cu > Cd) in their different organs (fruit/leaf>root>stem). The individual and combined health indexes (HRI, THQ and HI) showed that Pb and Cd have values greater than unity for wastewater irrigated vegetables, which could result in non-carcinogenic disease for short/lifetime exposure in adults and children. Overall, consumption of vegetables can be safer when grown with treated effluent than with UTW.


Assuntos
Metais Pesados , Poluentes do Solo , Adulto , Criança , Monitoramento Ambiental , Etiópia , Humanos , Metais Pesados/análise , Medição de Risco , Solo , Poluentes do Solo/análise , Verduras , Águas Residuárias/análise
17.
Exp Ther Med ; 20(6): 258, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33199984

RESUMO

The aim of the present study was to evaluate macular vascular density (MVD) variation after uneventful cataract surgery using optical coherence tomography angiography (OCTA) in patients with high myopia. Patients with cataracts scheduled for cataract surgery were divided into a high-myopia group [spherical equivalent (SE)≤-6.0 diopter (D) and axial length (AL)≥25 mm] and a low-myopia group (SE>-6.0 D and AL<25 mm). All patients were examined for MVD and retinal thickness (RT) with OCTA pre-operatively and post-operatively (1 day, 1 week, and 1 and 3 months after surgery). A total of 55 eyes from 44 patients were included. MVD and RT both changed after cataract surgery. The mean change in superficial vascular density (SVD) in patients with high myopia was significantly lower than that in the low-myopia group at the four post-operative time-points (all P<0.05). In addition, the RT of eyes with high myopia exhibited a different variation compared with that of the low-myopia group. Significant correlations were identified between AL, RT, intraocular pressure and SVD after surgery. In conclusion, superficial retinal perfusion in patients with high myopia was significantly lower than that in low myopia patients, which may lead to complications caused by poor perfusion.

18.
J Environ Manage ; 276: 111310, 2020 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-32891984

RESUMO

Tetracyclines are extensively used to treat human and animal infectious diseases due to its effective antimicrobial activities. About 70-90% of its parent materials are released into the environment through urine and feces, implying they are the most frequently detected antibiotics in the environment with high ecological risks. Adsorption and photocatalysis have been promising techniques for the removal of tetracyclines due to effectiveness and efficiency. Graphene-based materials provide promising platforms for adsorptive and photocatalytic removal of tetracyclines from aqueous environment owning to distinctive remarkable physicochemical, optical, and electrical characteristics. Herein, we intensively reviewed the available literatures in order to provide comprehensive insight about the applications and mechanisms of graphene-based materials for removal of tetracyclines via adsorption and phototocatalysis. The synthesis methods of graphene-based materials, the tetracycline adsorption and photocatalytic-degradation conditions, and removal mechanisms have been extensively discussed. Finally concluding remarks and future perspectives have been deduced and recommended to stimulate further researches in the subject. The review study can be used as theoretical guideline for further researchers to improve the current approaches of material synthesis and application towards tetracyclines removal.


Assuntos
Grafite , Purificação da Água , Adsorção , Antibacterianos , Humanos , Tetraciclinas
19.
Environ Res ; 191: 110093, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32853662

RESUMO

Carbon coated stainless-steel (SS) electrode has been suggested to be a powerful composite electrode with high conductivity, excellent biocompatibility and good mechanical strength, which is promising for scaling up the bioelectrochemical systems (BESs). However, the already reported carbon coating methods were independent on the production of SS material. Additional steps and investment of equipment for carbon coating are costly, and the industrialization of these carbon coating processes remains challenging. In this study, we report an industrializable carbon coating approach that was embedded into the production line of the SS wire, which was realized through a wire-drawing process with graphite emulsion as the lubricant and carbon source. We found the slide of SS wire through the dies was essential for the graphite coating in terms of loading amount and stability. When the graphite coated SS wire was prepared as the anode and operated in a BESs, the current density reached 1.761 ± 0.231 mA cm-2, which was 20 times higher than that without graphite coating. Biomass analysis was then conducted, confirming the superior bioelectrochemical performance was attributed to the improvement of biocompatibility by the graphite coating layer. Furthermore, graphite coating by the wire-drawing process was systematically compared with the existing methods, which showed a comparable or even better bioelectrochemical performance but with extremely low cost (0.036 $·m-2) and seconds level of the time consumption. Overall, this study offers a cost-effective and industrializable approach to preparing graphite coated SS electrode, which may open up great opportunities to promote the development of BESs at large scale.


Assuntos
Fontes de Energia Bioelétrica , Grafite , Eletrodos , Lubrificantes , Aço Inoxidável
20.
Appl Environ Microbiol ; 86(17)2020 08 18.
Artigo em Inglês | MEDLINE | ID: mdl-32561585

RESUMO

Hydrogen-entangled electron transfer has been verified as an important extracellular pathway of sharing reducing equivalents to regulate biofilm activities within a diversely anaerobic environment, especially in microbial electrosynthesis systems. However, with a lack of useful methods for in situ hydrogen detection in cathodic biofilms, the role of hydrogen involvement in electron transfer is still debatable. Here, a cathodic biofilm was constructed in CH4-produced microbial electrosynthesis reactors, in which the hydrogen evolution dynamic was analyzed to confirm the presence of hydrogen-associated electron transfer near the cathode within a micrometer scale. Fluorescent in situ hybridization images indicated that a colocalized community of archaea and bacteria developed within a 58.10-µm-thick biofilm at the cathode, suggesting that the hydrogen gradient detected by the microsensor was consumed by the collaboration of bacteria and archaea. Coupling of a microsensor and cyclic voltammetry test further provided semiquantitative results of the hydrogen-associated contribution to methane generation (around 21.20% ± 1.57% at a potential of -0.5 V to -0.69 V). This finding provides deep insight into the mechanism of electron transfer in biofilm on conductive materials.IMPORTANCE Electron transfer from an electrode to biofilm is of great interest to the fields of microbial electrochemical technology, bioremediation, and methanogenesis. It has a promising potential application to boost more value-added products or pollutant degradation. Importantly, the ability of microbes to obtain electrons from electrodes and utilize them brings new insight into direct interspecies electron transfer during methanogenesis. Previous studies verified the direct pathway of electron transfer from the electrode to a pure-culture bacterium, but it was rarely reported how the methanogenic biofilm of mixed cultures shares electrons by a hydrogen-associated or hydrogen-free pathway. In the current study, a combination method of microsensor and cyclic voltammetry successfully semiquantified the role of hydrogen in electron transfer from an electrode to methanogenic biofilm.


Assuntos
Archaea/fisiologia , Fenômenos Fisiológicos Bacterianos , Biofilmes , Hidrogênio/metabolismo , Metano/metabolismo , Archaea/metabolismo , Bactérias/metabolismo , Transporte de Elétrons
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA