RESUMO
A large and fast-growing number of studies across the social sciences use experiments to better understand the role of race in human interactions, particularly in the American context. Researchers often use names to signal the race of individuals portrayed in these experiments. However, those names might also signal other attributes, such as socioeconomic status (e.g., education and income) and citizenship. If they do, researchers would benefit greatly from pre-tested names with data on perceptions of these attributes; such data would permit researchers to draw correct inferences about the causal effect of race in their experiments. In this paper, we provide the largest dataset of validated name perceptions to date based on three different surveys conducted in the United States. In total, our data include over 44,170 name evaluations from 4,026 respondents for 600 names. In addition to respondent perceptions of race, income, education, and citizenship from names, our data also include respondent characteristics. Our data will be broadly helpful for researchers conducting experiments on the manifold ways in which race shapes American life.
Assuntos
Etnicidade , Renda , Humanos , Escolaridade , Classe Social , Inquéritos e Questionários , Estados UnidosRESUMO
To what extent do Americans racially discriminate against doctors? While a large literature shows that racial biases pervade the American healthcare system, there has been no systematic examination of these biases in terms of who patients select for medical treatment. We examine this question in the context of the ongoing global COVID-19 pandemic, where a wealth of qualitative evidence suggests that discrimination against some historically marginalized communities, particularly Asians, has increased throughout the United States. Conducting a well-powered conjoint experiment with a national sample of 1,498 Americans, we find that respondents do not, on average, discriminate against Asian or doctors from other systematically minoritized groups. We also find no consistent evidence of treatment effect heterogeneity; Americans of all types appear not to care about the racial identity of their doctor, at least in our study. This finding has important implications for the potential limits of American prejudice.
RESUMO
Since Downs proposed that the act of voting is irrational in 1957, myriad models have been proposed to explain voting and account for observed turnout patterns. We propose a model in which partisans consider both the instrumental and expressive benefits of their vote when deciding whether or not to abstain in an election, introducing an asymmetry that most other models do not consider. Allowing learning processes within our electorate, we analyze what evolutionarily stable strategies are rationalizable under various conditions. Upon varying electorate size, the partisan split of the electorate, and the degree to which an electorate takes underdog considerations into account in its payoff structure, we find that different equilibria arise. Our model predicts comparative statics that are consistent with voter behavior, specifically affirming a "size effect," in which turnout decreases as electorate size increases. Furthermore, relaxing some of our preliminary assumptions eliminates some of the discrepancies between the predictions of our model and empirical voter behavior. In particular, our work demonstrates that misperceptions about the partisan split of an electorate may account for high turnout behavior . SUPPLEMENTARY INFORMATION: The online version supplementary material available at 10.1007/s13235-021-00384-1.