Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 82
Filtrar
1.
Am J Chin Med ; : 1-19, 2024 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-39169449

RESUMO

Recent research has indicated that formononetin demonstrates a potent anti-inflammatory effect in various diseases. However, its impact on sterile inflammation kidney injury, specifically acute kidney injury (AKI), remains unclear. In this study, we utilized an ischemia/reperfusion-induced AKI (IRI-AKI) mouse model and bone marrow-derived macrophages (BMDMs) to investigate the effects of formononetin on sterile inflammation of AKI and to explore the underlying mechanism. The administration of formononetin significantly preserved kidney function from injury, as evidenced by lower serum creatinine and blood urea nitrogen levels compared to IRI-AKI mice without treatment. This was further confirmed by less pathological changes in renal tubules and low expression of tubular injury markers such as KIM-1 and NGAL in the formononetin-treated IRI-AKI group. Furthermore, formononetin effectively suppressed the expression of pro-inflammatory cytokines (MCP-1, TNF-[Formula: see text], and IL-1[Formula: see text]) and macrophage infiltration into the kidneys of AKI mice. In vitro studies showed that formononetin led to less macrophage polarization towards a pro-inflammatory phenotype in BMDMs stimulated by LPS and IFN-[Formula: see text]. The mechanism involved the KLF6 and p-STAT3 pathway, as overexpression of KLF6 restored pro-inflammatory cytokine levels and pro-inflammatory polarization. Our findings demonstrate that formononetin can significantly improve renal function and reduce inflammation in IRI-AKI, which may be attributed to the inhibition of KLF6/STAT3-mediated macrophage pro-inflammatory polarization. This discovery presents a new promising therapeutic option for the treatment of IRI-AKI.

2.
Angew Chem Int Ed Engl ; : e202411219, 2024 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-39020249

RESUMO

Two-dimensional organic-inorganic hybrid perovskites ( OIHPs) with alternating structure of the organic and inorganic layers have a natural quantum well structure. The difference of dielectric constants between organic and inorganic layers in this structure results in the enhancement of dielectric confinement effect, which exhibits a large exciton binding energy and hinders the separation of electron-hole pairs. Herein, a strategy to reduce the dielectric confinement effect by narrowing the dielectric difference between organic amine molecule and [PbBr6]4- octahedron is put forward. The Ethanolamine (EOA) contains hydroxyl groups, resulting in the positive and negative charge centers of O and H non-overlapping,which generated a larger polarity and dielectric constant. The reduced dielectric constant produces a smaller exciton binding energy (71.03 meV) of (C2H7NO)2PbBr4 ((EOA)2PbBr4) than (C8H11N)2PbBr4 ((PEA)2PbBr4 (156.07 meV), and promotes the dissociation of electrons and holes. The increasing of lifetime of photogenerated carrier in (EOA)2PbBr4 are proved by femtosecond transient absorption spectra. DFT calculations have also indicated that the small energy shift of the total density of states (DOS) between the C/H/N and the Pb/Br in (EOA)2PbBr4 favors the separation of electrons and holes. In addition, this work demonstrates the application of (PEA)2PbBr4 and (EOA)2PbBr4 in the field of photocatalytic CO2 reduction.

3.
Foods ; 13(14)2024 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-39063257

RESUMO

Many food proteins can be assembled into nanofibrils under pH conditions far from the isoelectric point and with a low ionic strength by heating them for a long period. These food protein nanofibrils (FPN) have outstanding functional and biological properties and are considered sustainable biomaterials in many fields. In this study, we review the recent developments in FPN gels and introduce the key factors in promoting food protein self-assembly in order to create functional gels. The major variables discussed are the morphology of nanofibrils, protein concentration, heating time, and the type and concentration of salts. We also highlight current advances in the formation and properties of different types of FPN gels. In addition, the various applications of FPN gels in bioactive and nutrient delivery, adsorbents for CO2 and toxic pollutants, cell scaffolding biomaterials, biosensors, and others are introduced and discussed.

4.
Colloids Surf B Biointerfaces ; 241: 114031, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38878661

RESUMO

The therapy of the clear cell renal cell carcinoma (ccRCC) is crucial for the human healthcare due to its easy metastasis and recurrence, as well as resistance to radiotherapy and chemotherapy. In this work, we propose the synthesis of MoS2@red phosphorus (MoS2@RP) heterojunction to induce synergistic photodynamic and photothermal therapy (PDT/PTT) of ccRCC. The MoS2@RP heterojunction exhibits enhanced spectra absorption in the NIR range and produce local heat-increasing under the NIR laser irradiation compared with pure MoS2 and RP. The high photocatalytic activity of the MoS2@RP heterojunction contributes to effective transferring of the photo-excited electrons from the RP to MoS2, which promotes the production of various types of radical oxygen species (ROS) to kill the ccRCC cells. After the NIR irradiation, the MoS2@RP can effectively induce the apoptosis in the ccRCC cells through localized hyperthermia and the generation of ROS, while exhibiting low cytotoxicity towards normal kidney cells. In comparison to MoS2, the MoS2@RP heterojunction shows an approximate increase of 22 % in the lethality rate of the ccRCC cells and no significant change in toxicity towards normal cells. Furthermore, the PDT/PTT treatment using the MoS2@RP heterojunction effectively eradicates a substantial number of deep-tissue ccRCC cells in vivo without causing significant damage to major organs. This study presents promising effect of the MoS2@RP heterojunction-based photo-responsive therapy for effective ccRCC treatment.


Assuntos
Carcinoma de Células Renais , Dissulfetos , Neoplasias Renais , Molibdênio , Fósforo , Fotoquimioterapia , Terapia Fototérmica , Molibdênio/química , Molibdênio/farmacologia , Humanos , Dissulfetos/química , Dissulfetos/farmacologia , Dissulfetos/síntese química , Fósforo/química , Fósforo/farmacologia , Neoplasias Renais/patologia , Neoplasias Renais/terapia , Neoplasias Renais/tratamento farmacológico , Carcinoma de Células Renais/patologia , Carcinoma de Células Renais/terapia , Carcinoma de Células Renais/tratamento farmacológico , Animais , Apoptose/efeitos dos fármacos , Camundongos , Sobrevivência Celular/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Ensaios de Seleção de Medicamentos Antitumorais , Fármacos Fotossensibilizantes/farmacologia , Fármacos Fotossensibilizantes/química , Fármacos Fotossensibilizantes/síntese química , Antineoplásicos/farmacologia , Antineoplásicos/química , Antineoplásicos/síntese química , Tamanho da Partícula , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Raios Infravermelhos , Propriedades de Superfície
5.
Eur J Med Res ; 29(1): 341, 2024 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-38902792

RESUMO

BACKGROUND: Research into the acute kidney disease (AKD) after acute ischemic stroke (AIS) is rare, and how clinical features influence its prognosis remain unknown. We aim to employ interpretable machine learning (ML) models to study AIS and clarify its decision-making process in identifying the risk of mortality. METHODS: We conducted a retrospective cohort study involving AIS patients from January 2020 to June 2021. Patient data were randomly divided into training and test sets. Eight ML algorithms were employed to construct predictive models for mortality. The performance of the best model was evaluated using various metrics. Furthermore, we created an artificial intelligence (AI)-driven web application that leveraged the top ten most crucial features for mortality prediction. RESULTS: The study cohort consisted of 1633 AIS patients, among whom 257 (15.74%) developed subacute AKD, 173 (10.59%) experienced AKI recovery, and 65 (3.98%) met criteria for both AKI and AKD. The mortality rate stood at 4.84%. The LightGBM model displayed superior performance, boasting an AUROC of 0.96 for mortality prediction. The top five features linked to mortality were ACEI/ARE, renal function trajectories, neutrophil count, diuretics, and serum creatinine. Moreover, we designed a web application using the LightGBM model to estimate mortality risk. CONCLUSIONS: Complete renal function trajectories, including AKI and AKD, are vital for fitting mortality in AIS patients. An interpretable ML model effectively clarified its decision-making process for identifying AIS patients at risk of mortality. The AI-driven web application has the potential to contribute to the development of personalized early mortality prevention.


Assuntos
Inteligência Artificial , AVC Isquêmico , Humanos , Masculino , Feminino , Idoso , AVC Isquêmico/mortalidade , Estudos Retrospectivos , Pessoa de Meia-Idade , Prognóstico , Injúria Renal Aguda/mortalidade , Aprendizado de Máquina , Medicina de Precisão/métodos , Algoritmos
6.
J Mater Chem B ; 12(16): 4039-4052, 2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38591157

RESUMO

Clear cell renal cell carcinoma (ccRCC) is a disease with high incidence and poor prognosis. The conventional treatment involves radiotherapy and chemotherapy, but chemotherapeutic agents are often associated with side effects, i.e., cytotoxicity to nontumor cells. Therefore, there is an urgent need for the development of novel therapeutic strategies for ccRCC. We synthesized spherical P/TiO2 nanoparticles (P/TiO2 NPs) by vaporization phosphorization (VP). X-ray photoelectron spectroscopy (XPS) and ultraviolet-visible diffuse reflectance spectroscopy (UV-Vis DRS) analyses confirmed that the anatase TiO2 surface was successfully doped with phosphorus and produced a large number of oxygen vacancies (OV). Serving as a photosensitizer, P/TiO2 NPs not only extended the photoresponse range to the near-infrared II region (NIR II) but also introduced a donor energy level lower than the TiO2 conduction band, narrowing the band gap, which could facilitate the migration of photogenerated charges and trigger the synergistic treatment of photodynamic therapy (PDT) and photothermal therapy (PTT). During NIR irradiation in vitro, the P/TiO2 NPs generated local heat and various oxygen radicals, including 1O2, ˙O2-, H2O2, and ˙OH, which damaged the ccRCC cells. In vivo, administration of the P/TiO2 NPs + NIR reduced the tumor volume by 80%, and had the potential to inhibit tumor metastasis by suppressing intratumor neoangiogenesis. The P/TiO2 NPs showed superior safety and efficacy relative to the conventional chemotherapeutic agent used in ccRCC treatment. This study introduced an innovative paradigm for renal cancer treatment, highlighting the potential of P/TiO2 NPs as safe and effective nanomaterials and presenting a compelling new option for clinical applications in anticancer therapy.


Assuntos
Carcinoma de Células Renais , Neoplasias Renais , Nanocompostos , Fósforo , Fotoquimioterapia , Terapia Fototérmica , Titânio , Titânio/química , Titânio/farmacologia , Fósforo/química , Humanos , Animais , Nanocompostos/química , Neoplasias Renais/tratamento farmacológico , Neoplasias Renais/patologia , Neoplasias Renais/terapia , Camundongos , Carcinoma de Células Renais/tratamento farmacológico , Carcinoma de Células Renais/patologia , Carcinoma de Células Renais/terapia , Fármacos Fotossensibilizantes/química , Fármacos Fotossensibilizantes/farmacologia , Fármacos Fotossensibilizantes/síntese química , Antineoplásicos/química , Antineoplásicos/farmacologia , Antineoplásicos/síntese química , Sobrevivência Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Camundongos Nus , Camundongos Endogâmicos BALB C , Ensaios de Seleção de Medicamentos Antitumorais , Tamanho da Partícula , Linhagem Celular Tumoral
7.
Small ; 20(13): e2308767, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37949814

RESUMO

Dual single-atom catalysts (DSACs) are promising for breaking the scaling relationships and ensuring synergistic effects compared with conventional single-atom catalysts (SACs). Nevertheless, precise synthesis and optimization of DSACs with specific locations and functions remain challenging. Herein, dual single-atoms are specifically incorporated into the layer-stacked bulk-like carbon nitride, featuring in-plane three-coordinated Pd and interplanar four-coordinated Cu (Pd1-Cu1/b-CN) atomic sites, from both experimental results and DFT simulations. Using femtosecond time-resolved transient absorption (fs-TA) spectroscopy, it is found that the in-plane Pd features a charge decay lifetime of 95.6 ps which is much longer than that of the interplanar Cu (3.07 ps). This finding indicates that the in-plane Pd can provide electrons for the reaction as the catalytically active site in both structurally and dynamically favorable manners. Such a well-defined bi-functional cascade system ensures a 3.47-fold increase in CO yield compared to that of bulk-like CN (b-CN), while also exceeding the effects of single Pd1/b-CN and Cu1/b-CN sites. Furthermore, DFT calculations reveal that the inherent transformation from s-p coupling to d-p hybridization between the Pd site and CO2 molecule occurs during the initial CO2 adsorption and hydrogenation processes and stimulates the preferred CO2-to-CO reaction pathway.

8.
Materials (Basel) ; 16(21)2023 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-37959641

RESUMO

Acoustic metasurfaces, as two-dimensional acoustic metamaterials, are a current research topic for their sub-wavelength thickness and excellent acoustic wave manipulation. They hold significant promise in noise reduction and isolation, cloaking, camouflage, acoustic imaging, and focusing. Resonant structural units are utilized to construct acoustic metasurfaces with the unique advantage of controlling large wavelengths within a small size. In this paper, the recent research progresses of the resonant metasurfaces are reviewed, covering the design mechanisms and advances of structural units, the classification and application of the resonant metasurfaces, and the tunable metasurfaces. Finally, research interest in this field is predicted in future.

10.
Eur J Med Res ; 28(1): 344, 2023 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-37710348

RESUMO

INTRODUCTION: Hexarelin exhibits significant protection against organ injury in models of ischemia/reperfusion (I/R)-induced injury (IRI). Nevertheless, the impact of Hexarelin on acute kidney injury (AKI) and its underlying mechanism remains unclear. In this study, we investigated the therapeutic potential of Hexarelin in I/R-induced AKI and elucidated its molecular mechanisms. METHODS: We assessed the protective effects of Hexarelin through both in vivo and in vitro experiments. In the I/R-induced AKI model, rats were pretreated with Hexarelin at 100 µg/kg/d for 7 days before being sacrificed 24 h post-IRI. Subsequently, kidney function, histology, and apoptosis were assessed. In vitro, hypoxia/reoxygenation (H/R)-induced HK-2 cell model was used to investigate the impact of Hexarelin on apoptosis in HK-2 cells. Then, we employed molecular docking using a pharmmapper server and autodock software to identify potential target proteins of Hexarelin. RESULTS: In this study, rats subjected to I/R developed severe kidney injury characterized by tubular necrosis, tubular dilatation, increased serum creatinine levels, and cell apoptosis. However, pretreatment with Hexarelin exhibited a protective effect by mitigating post-ischemic kidney pathological changes, improving renal function, and inhibiting apoptosis. This was achieved through the downregulation of conventional apoptosis-related genes, such as Caspase-3, Bax and Bad, and the upregulation of the anti-apoptotic protein Bcl-2. Consistent with the in vivo results, Hexarelin also reduced cell apoptosis in post-H/R HK-2 cells. Furthermore, our analysis using GSEA confirmed the essential role of the apoptosis pathway in I/R-induced AKI. Molecular docking revealed a strong binding affinity between Hexarelin and MDM2, suggesting the potential mechanism of Hexarelin's anti-apoptosis effect at least partially through its interaction with MDM2, a well-known negative regulator of apoptosis-related protein that of p53. To validate these findings, we evaluated the relative expression of MDM2 and p53 in I/R-induced AKI with or without Hexarelin pre-administration and observed a significant suppression of MDM2 and p53 by Hexarelin in both in vivo and in vitro experiments. CONCLUSION: Collectively, Hexarelin was identified as a promising medication in protecting apoptosis against I/R-induced AKI.


Assuntos
Injúria Renal Aguda , Traumatismo por Reperfusão , Animais , Ratos , Proteína Supressora de Tumor p53/genética , Simulação de Acoplamento Molecular , Injúria Renal Aguda/tratamento farmacológico , Traumatismo por Reperfusão/tratamento farmacológico , Isquemia
11.
J Org Chem ; 88(18): 13142-13148, 2023 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-37654092

RESUMO

With the increasing relevance of organophosphorus fluorine compounds in the pharmaceutical industry, their synthesis has attracted great attention. Herein, we report an efficient fluorination strategy for P(O)-H and P(O)-OH compounds using sulfuryl fluoride as the fluorination reagent. Avoiding the use of expensive or complex prepreparation reagents for fluoridation, this strategy could conveniently construct a variety of fluorophosphonates and phosphonofluoridates under mild conditions and without additional oxidants.

12.
Eur J Med Res ; 28(1): 312, 2023 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-37660080

RESUMO

PURPOSE: Furosemide, a frequently prescribed diuretic for managing congestive heart failure and edema, remains a topic of debate regarding its potential risk of inducing acute kidney injury (AKI) in patients. Consequently, this study aims to examine the occurrence of hospital-acquired AKI (HA-AKI) in hospitalized patients who are administered furosemide and to investigate potential risk factors associated with this outcome. METHODS: This study encompassed a cohort of 22374 hospitalized patients who either received furosemide treatment or not from June 1, 2012, to December 31, 2017. Propensity score matching was employed to establish comparability between the two groups regarding covariates. Subsequently, a nomogram was constructed to predict the probability of AKI occurrence among patients who underwent furosemide treatment. RESULTS: The regression analysis identified the single-day total dose of furosemide as the most significant factor for AKI, followed by ICU administration, estimated glomerular filtration rate, antibiotic, statin, NSAIDs, ß-blockers, proton pump inhibitor, chronic kidney disease, and 7 other indicators. Subgroup analysis revealed a synergistic effect of furosemide with surgical operation, previous treatment with ß-blockers, ACEI/ARB and antibiotics, leading to an increased risk of AKI when used in combination. Subsequently, a visually represented prognostic nomogram was developed to predict AKI occurrence in furosemide users. The predictive accuracy of the nomogram was assessed through calibration analyses, demonstrating an excellent agreement between the nomogram predictions and the actual likelihood of AKI, with a probability of 77.40%. CONCLUSIONS: Careful consideration of factors such as dosage, concurrent medication use, and renal function of the patient is necessary for clinical practice when using furosemide. Our practical prognostic model for HA-AKI associated with furosemide use can be utilized to assist clinicians in making informed decisions about patient care and treatment.


Assuntos
Injúria Renal Aguda , Insuficiência Cardíaca , Humanos , Furosemida/efeitos adversos , Antagonistas de Receptores de Angiotensina , Inibidores da Enzima Conversora de Angiotensina , Injúria Renal Aguda/induzido quimicamente , Insuficiência Cardíaca/tratamento farmacológico , Antibacterianos
13.
Artigo em Inglês | MEDLINE | ID: mdl-37632677

RESUMO

It is important to explore whether there are antagonistic and synergistic effects between different strains of Lactobacillus when developing mixed Lactobacillus strain products. In this study, we investigated the antagonistic and symbiotic effects of co-cultured Lactobacillus strains, as well as their amelioratory effects on lipopolysaccharide (LPS)-induced inflammation and oxidative stress in RAW264.7 cells. The Lactobacillus strains tested in this paper showed no antagonism. Co-culture of Lactiplantibacillus plantarum Y44 and L. plantarum AKS-WS9 was found to show inhibiting effects on the growth of Escherichia coli and Staphylococcus aureus. Additionally, the co-cultured Lactiplantibacillus plantarum Y44 and L. plantarum AKS-WS9 relieved inflammation in RAW264.7 cells induced by LPS by inhibiting the activation of NF-κB and P38 signaling pathways and down-regulating the expression of pro-inflammatory cytokines NO, ROS, iNOs and TNF-α. And the co-cultured Lactobacillus strains activated the Nrf2 signaling pathway in the LPS-induced RAW264.7 cells to promote the expression of antioxidant enzymes in response to oxidative stress. There was a difference in intracellular and extracellular metabolites between single or co-cultured Lactobacillus strains, and the co-cultured Lactobacillus strains significantly increased extracellular metabolites 4-chlorobenzaldehyde, psoromic acid, and 2-dodecylbenzenesulfonic acid and intracellular metabolites 9(S)-HODE, pyocyanin, and LysoPA. We inferred that the better antibacterial and anti-inflammatory ability of the co-cultured Lactobacillus strains were related to the changes in the metabolites of the co-cultured Lactobacillus strains. The co-cultured L. plantarum Y44 and L. plantarum AKS-WS9 strains exhibited better anti-inflammatory abilities and had the potential to alleviate the symptoms of inflammatory diseases as mixed probiotics.

14.
Ren Fail ; 45(1): 2212800, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37199267

RESUMO

BACKGROUND: Patients with end-stage renal disease (ESRD) especially those undergoing dialysis have a high prevalence of hyperkalemia, which must be detected and treated immediately. But the initial symptoms of hyperkalemia are insidious, and traditional laboratory serum potassium concentration testing takes time. Therefore, rapid and real-time measurement of serum potassium is urgently needed. In this study, different machine learning methods were used to make rapid predictions of different degrees of hyperkalemia by analyzing the ECG. METHODS: A total of 1024 datasets of ECG and serum potassium concentrations were analyzed from December 2020 to December 2021. The data were scaled into training and test sets. Different machine learning models (LR, SVM, CNN, XGB, Adaboost) were built for dichotomous prediction of hyperkalemia by analyzing 48 features of chest leads V2-V5. The performance of the models was also evaluated and compared using sensitivity, specificity, accuracy, accuracy, F1 score and AUC. RESULTS: We constructed different machine models to predict hyperkalemia using LR and four other common machine-learning methods. The AUCs of the different models ranged from 0.740 (0.661, 0.810) to 0.931 (0.912,0.953) when different serum potassium concentrations were used as the diagnostic threshold for hyperkalemia, respectively. As the diagnostic threshold of hyperkalemia was raised, the sensitivity, specificity, accuracy and precision of the model decreased to various degrees. And AUC also performed less well than when predicting mild hyperkalemia. CONCLUSION: Noninvasive and rapid prediction of hyperkalemia can be achieved by analyzing specific waveforms on the ECG by machine learning methods. But overall, XGB had a higher AUC in mild hyperkalemia, but SVM performed better in predicting more severe hyperkalemia.


Assuntos
Hiperpotassemia , Falência Renal Crônica , Humanos , Hiperpotassemia/diagnóstico , Hiperpotassemia/etiologia , Potássio , Falência Renal Crônica/complicações , Falência Renal Crônica/terapia , Aprendizado de Máquina , Eletrocardiografia/métodos
15.
Front Vet Sci ; 10: 1134193, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36950537

RESUMO

Following the discovery of Eimeria kongi, we investigated the pathogenicity, immunogenicity, endogenous development and drug sensitivity of this coccidian. Coccidia-free rabbits were inoculated with 1 × 102 to 5 × 104 sporulated oocysts of E. kongi before challenge 14 days post inoculation. E. kongi was moderately pathogenic and induced good immunity against re-infection. All inoculated doses results in reduced food intake and body weight gain, and an inoculation oocyst dose of 1 × 103 or higher caused various degrees of diarrhea. Except for one death of the highest dose group, all rabbits recovered 12 days post inoculation. An inoculation dose of 1 × 103 or 1 × 104 oocysts conferred the most effective protection from re-infection, which reduced oocyst output by approximately 99% and maintained body weight gain. Four generations of schizogony were observed, and the endogenous development mainly occurred in the jejunum and ileum of rabbits. E. kongi was most sensitive to sulfachloropyrazine sodium, followed by decoquinate; it is resistant to diclazuril. Both decoquinate and sulfachloropyrazine sodium may be effective in the control of E. kongi infection.

16.
Food Chem ; 410: 135433, 2023 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-36640658

RESUMO

Homogeneous and secondary nuclei (HN and SN) are aggregates formed at different stages of whey protein isolate (WPI) self-assembly. More fibrils can form when HN/SN are added as nuclei than when WPI self-assembles. We evaluated the effect of hydrolysis treatment on fibril-induction ability of nuclei derived from WPI, and investigated the relationship between induction ability and nuclear structure. Hydrolyzed SN-induced 9.47% more WPI fibrils than unhydrolyzed SN-induced. Infrared spectroscopy, X-ray diffraction analysis, and atomic force microscopy were used to examine the structural changes in hydrolyzed nuclei and the fibrils induced using these nuclei. We concluded that hydrolysis treatment led to a looser inter-ß-sheet packaging in nuclei by increasing the inter-ß-sheet distance. The inter-ß-sheet distance of cross-ß structure was a key determinant of fibril-induction ability of nuclei, which could be enhanced when inter-ß-sheet structure was moderately loose. This research may provide a theoretical basis for the mechanism of nuclei-induced WPI fibrillation.


Assuntos
Amiloide , Proteínas do Soro do Leite/química , Hidrólise , Amiloide/química , Microscopia de Força Atômica
17.
Appl Environ Microbiol ; 89(1): e0181522, 2023 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-36533927

RESUMO

Unravelling the structure-function variation of phycospheric microorganisms and its ecological correlation with harmful macroalgal blooms (HMBs) is a challenging research topic that remains unclear in the natural dynamic process of HMBs. During the world's largest green tide bloom, causative macroalgae Ulva prolifera experienced dramatic changes in growth state and environmental conditions, providing ideal scenarios for this investment. Here, we assess the phycospheric physicochemical characteristics, the algal host's biology, the phycospheric bacterial constitutive patterns, and the functional potential during the U. prolifera green tide. Our results indicated that (i) variation in the phycosphere nutrient structure was closely related to the growth state of U. prolifera; (ii) stochastic processes govern phycospheric bacterial assembly, and the contribution of deterministic processes to assembly varied among phycospheric seawater bacteria and epiphytic bacteria; (iii) phycospheric seawater bacteria and epiphytic bacteria exhibited significant heterogeneity variation patterns in community composition, structure, and metabolic potential; and (iv) phycospheric bacteria with carbon or nitrogen metabolic functions potentially influenced the nutrient utilization of U. prolifera. Furthermore, the keystone genera play a decisive role in the structure-function covariation of phycospheric bacterial communities. Our study reveals complex interactions and linkages among environment-algae-bacterial communities which existed in the macroalgal phycosphere and highlights the fact that phycospheric microorganisms are closely related to the fate of the HMBs represented by the green tide. IMPORTANCE Harmful macroalgal blooms represented by green tides have become a worldwide marine ecological problem. Unraveling the structure-function variation of phycospheric microorganisms and their ecological correlation with HMBs is challenging. This issue is still unclear in the natural dynamics of HMBs. Here, we revealed the complex interactions and linkages among environment-algae-bacterial communities in the phycosphere of the green macroalgae Ulva prolifera, which causes the world's largest green tides. Our study provides new ideas to increase our understanding of the variation patterns of macroalgal phycospheric bacterial communities and the formation mechanisms and ecological effects of green tides and highlights the importance of phycospheric microorganisms as a robust tool to help understand the fate of HMBs.


Assuntos
Alga Marinha , Ulva , Eutrofização , Água do Mar/química , Bactérias/genética , China
18.
Carbohydr Polym ; 300: 120290, 2023 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-36372497

RESUMO

In this paper, amphiphilic chitosan and carboxymethyl modified gellan gum were synthesized to develop an active edible fresh-keeping material. The optimal weight ratio of CMCS-g-CA/CMGG was determined as 5:2 through the characterization of Fourier transform infrared (FT-IR), Thermogravimetric analysis (TGA), mechanical and barrier properties of the composite films. In addition, the water vapor permeability and oxygen permeability of CMCS-g-CA/CMGG composite films incorporated with mustard essential oil were all declined, and the antibacterial property of the composite film solutions against E. coli, S. aureus and Bacillus anthracis was distinctly improved with the increase of mustard essential oil (MEO) dosage. Furthermore, the CMCS-g-CA/CMGG + 2.0 µL/mL MEO composite film exhibited an effective preservation on mango fruits during 20 days of storage based on the characterization of surface appearance and quality indexes of fruits. Hence, the multifunctional CMCA-g-CA/CMGG/MEO composite films can be served as a prospective eco-friendly packaging material for fruit preservation.


Assuntos
Quitosana , Mangifera , Óleos Voláteis , Óleos Voláteis/farmacologia , Staphylococcus aureus , Escherichia coli , Espectroscopia de Infravermelho com Transformada de Fourier , Mostardeira , Estudos Prospectivos , Antibacterianos/farmacologia , Permeabilidade , Embalagem de Alimentos
19.
Front Pharmacol ; 13: 970616, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36278223

RESUMO

Renal ischemia reperfusion injury (IRI) is a leading and common cause of acute kidney injury (AKI), and inflammation is a critical factor in ischemic AKI progression. Calycosin (CAL), a major active component of Radix astragali, has been reported to have anti-inflammatory effect in multiple organs. However, whether CAL can alleviate renal IRI and its mechanism remain uncertain. In the present study, a renal IRI model is established by bilateral renal pedicles occlusion for 35 min in male C57BL/6 mice, and the effect of CAL on renal IRI is measured by serum creatinine and pathohistological assay. Hypoxia/reoxygenation (H/R) stimulated human renal tubular epithelial cells HK-2 were applied to explore the regulatory mechanisms of CAL. Luciferase reporter assay and molecular docking were applied to identify the CAL's target protein and pathway. In the mice with renal IRI, CAL dose dependently alleviated the renal injury and decreased nuclear factor kappa B (NF-κB) mediated inflammatory response. Bioinformatics analysis and experiments showed that early growth response 1 (EGR1) increased in mice with renal IRI and promoted NF-κB mediated inflammatory processes, and CAL dose-dependably reduced EGR1. Through JASPAR database and luciferase reporter assay, peroxisome proliferator-activated receptor γ (PPARγ) was predicted to be a transcription factor of EGR1 and repressed the expression of EGR1 in renal tubular epithelial cells. CAL could increase PPARγ in a dose dependent manner in mice with renal IRI and molecular docking predicted CAL could bind stably to PPARγ. In HK-2 cells after H/R, CAL increased PPARγ, decreased EGR1, and inhibited NF-κB mediated inflammatory response. However, PPARγ knockdown by siRNA transfection abrogated the anti-inflammation therapeutic effect of CAL. CAL produced a protective effect on renal IRI by attenuating NF-κB mediated inflammatory response via PPARγ/EGR1 pathway.

20.
Sci Rep ; 12(1): 13813, 2022 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-35970918

RESUMO

At present, there are few clinical studies on the application of high-concentration sodium chloride solutions in intracavitary ECG-guided catheter tip localization during the arm infusion port implantation. This study observed the effects of sodium chloride solutions with different concentrations on intracavitary ECG-guided arm infusion port implantation in the patients with cancer. The 657 patients receiving arm infusion port implantation in our hospital between January 2020 and August 2021 were randomly divided into 0.9% sodium chloride solution conduction group (group A), 5.45% sodium chloride solution conduction group (group B) and 10% sodium chloride solution conduction group (group C). The derived rate of stable intracavitary ECG, the occurrence rate of characteristic P wave, the time used for catheter tip localization and the optimal position rate of catheter tip were compared between the three groups. The derived rate of stable intracavitary ECG was significantly higher in the group B (97.78%) and group C (98.63%) than in the group A (93.90%) (all P < 0.05). The occurrence rate of characteristic P wave was also significantly higher in the group B (96.89%) and group C (97.72%) than in the group A (88.73%) (all P < 0.001). The time used for catheter tip localization was significantly shorter in the group B [(49.73 ± 8.15) s] and group C [(48.27 ± 8.61) s] than in the group A [(69.37 ± 19.99) s] (all P < 0.001). There was no significant difference in the optimal position rate of catheter tip among the three groups (P > 0.05). The 5.45% and 10% sodium chloride solutions are significantly superior comparing with 0.9% sodium chloride solution in the derived rate of stable intracavitary ECG, occurrence rate of characteristic P wave and time used for catheter tip localization, but there were no significant differences between 5.45 and 10% sodium chloride solutions. Moreover, the 5.45% sodium chloride solution is closer to physiological state comparing with 10% sodium chloride solution, so the 5.45% sodium chloride solution may be recommended for the intracavitary ECG-guided arm infusion port implantation.


Assuntos
Neoplasias , Cloreto de Sódio , Braço , Eletrocardiografia , Frequência Cardíaca , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA