Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Front Neurol ; 15: 1353275, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38682035

RESUMO

Introduction: Ischemic stroke (IS) is a cerebrovascular disease that can be disabling and fatal, and there are limitations in the clinical treatment and prognosis of IS. It has been reported that changes in the expression profile of circRNAs have been found during injury in ischemic stroke, and circRNAs play an important role in the IS cascade response. However, the specific mechanisms involved in the pathogenesis of IS are not yet fully understood, and thus in-depth studies are needed. Methods: In this study, one circRNA dataset (GSE161913), one miRNA dataset (GSE60319) and one mRNA dataset (GSE180470) were retrieved from the Gene Expression Omnibus (GEO) database and included, and the datasets were differentially expressed analyzed by GEO2R and easyGEO to get the DEcircRNA, DEmiRNA and DEmRNA, and DEmRNA was enriched using ImageGP, binding sites were predicted in the ENCORI database, respectively, and the competitive endogenous RNA (ceRNA) regulatory network was visualized by the cytoscape software, and then selected by MCC scoring in the cytoHubba plugin Hub genes. In addition, this study conducted a case-control study in which blood samples were collected from stroke patients and healthy medical examiners to validate the core network of ceRNAs constructed by biosignature analysis by real-time fluorescence quantitative qRT-PCR experiments. Results: A total of 233 DEcircRNAs, 132 DEmiRNAs and 72 DEmRNAs were screened by bioinformatics analysis. circRNA-mediated ceRNA regulatory network was constructed, including 148 circRNAs, 43 miRNAs and 44 mRNAs. Finally, CLEC16A|miR-654-5p|RARA competitive endogenous regulatory axis was selected for validation by qRT-PCR, and the validation results were consistent with the bioinformatics analysis. Discussion: In conclusion, the present study establishes a new axis of regulation associated with IS, providing new insights into the pathogenesis of IS.

2.
Int J Clin Exp Pathol ; 10(11): 11326-11334, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-31966487

RESUMO

BACKGROUND: It has been identified consequences of dysregulation of JAK-STAT signalling, particularly in regard to JAK-STAT signalling that has been shown to have roles in the oncogenesis of several cell types. SOCS3 protein, the negative regulatory protein of JAK-STAT signaling pathway, may also plays critical regulatory roles in cancer initiation and progression. SOCS3 promoter hypermethylation has often been identified in human cancers; however, the precise role of SOCS3 in bladder cancer is unclear. METHODS: The methylation status of the SOCS3 was analyzed in an age (±5 years) and sex-matched case-control study, including 112 bladder cancer cases and 118 normal controls, using the MassARRAY EpiTYPER system. RESULTS: Methylation rate of JAK2, SOCS3 and STAT3 gene were shown to vary among different CpG island. The methylation rate of SOCS3 gene was also much higher in BCa than in normal control participants, but the methylation rate of JAK2, STAT3 gene weren't different in Bca and normal control participants. CONCLUSIONS: Our study demonstrates that promoter hypermethylation of SOCS3 gene is associated with BCa and thus, may serve as an independent prognostic biomarker.

3.
Blood Coagul Fibrinolysis ; 26(2): 131-5, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25390504

RESUMO

Previous studies showed that selenoprotein S (SELS) was associated with a range of inflammatory markers, and its gene expression was influenced by a polymorphism in the promoter region. The genetic basis of the ischemic stroke has now been largely determined, so the aim of the study was to examine the role of SELS genetic variants in the ischemic stroke risk in a Chinese population. We conducted a case-control study with 239 ischemic stroke patients and 240 controls. Two single-nucleotide polymorphisms (SNPs) in SELS genes were analyzed for association with the risk of ischemic stroke in the Chinese Han population. No evidence of ischemic stroke association was observed with the SNP rs34713741. Interestingly, the strongest evidence showed that SELS SNP rs4965814 was associated with ischemic stroke (P < 0.05). We found a significant association with increased ischemic stroke risk in women carrying the CC genotype of rs4965814 [hazard ratio: 2.43(1.03-5.75)]; a similar trend was also found in men carrying the TC genotype of rs4965814 [hazard ratio: 1.81(1.06-3.08)]. SNP rs4965814 of SELS may affect the susceptibility to ischemic stroke. Understanding the inflammatory mechanisms of ischemic stroke may give new therapeutic targets to pharmacologists.


Assuntos
Povo Asiático/genética , Isquemia Encefálica/genética , Proteínas de Membrana/genética , Selenoproteínas/genética , Acidente Vascular Cerebral/genética , Estudos de Casos e Controles , Feminino , Predisposição Genética para Doença , Humanos , Masculino , Pessoa de Meia-Idade , Polimorfismo de Nucleotídeo Único , Fatores de Risco
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA