Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Plant Cell ; 35(6): 1834-1847, 2023 05 29.
Artigo em Inglês | MEDLINE | ID: mdl-36896651

RESUMO

Small regulatory RNAs can move between organisms and regulate gene expression in the recipient. Whether the trans-species small RNAs being exported are distinguished from the normal endogenous small RNAs of the source organism is not known. The parasitic plant Cuscuta campestris (dodder) produces many microRNAs that specifically accumulate at the host-parasite interface, several of which have trans-species activity. We found that induction of C. campestris interface-induced microRNAs is similar regardless of host species and occurs in C. campestris haustoria produced in the absence of any host. The loci-encoding C. campestris interface-induced microRNAs are distinguished by a common cis-regulatory element. This element is identical to a conserved upstream sequence element (USE) used by plant small nuclear RNA loci. The properties of the interface-induced microRNA primary transcripts strongly suggest that they are produced via U6-like transcription by RNA polymerase III. The USE promotes accumulation of interface-induced miRNAs (IIMs) in a heterologous system. This promoter element distinguishes C. campestris IIM loci from other plant small RNAs. Our data suggest that C. campestris IIMs are produced in a manner distinct from canonical miRNAs. All confirmed C. campestris microRNAs with documented trans-species activity are interface-induced and possess these features. We speculate that RNA polymerase III transcription of IIMs may allow these miRNAs to be exported to hosts.


Assuntos
Cuscuta , MicroRNAs , Parasitos , Animais , MicroRNAs/genética , MicroRNAs/metabolismo , Cuscuta/genética , Cuscuta/metabolismo , Parasitos/genética , RNA Nuclear Pequeno/genética , RNA Nuclear Pequeno/metabolismo , RNA Polimerase III/metabolismo , Interações Hospedeiro-Parasita , Plantas/genética
2.
PLoS One ; 17(10): e0275471, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36215256

RESUMO

Small RNAs (sRNAs) are an important group of non-coding RNAs that have great potential as diagnostic and prognostic biomarkers for treatment of a wide variety of diseases. The portability and affordability of nanopore sequencing technology makes it ideal for point of care and low resource settings. Currently sRNAs can't be reliably sequenced on the nanopore platform due to the short size of sRNAs and high error rate of the nanopore sequencer. Here, we developed a highly efficient nanopore-based sequencing strategy for sRNAs (SR-Cat-Seq) in which sRNAs are ligated to an adapter, circularized, and undergo rolling circle reverse transcription to generate concatemeric cDNA. After sequencing, the resulting tandem repeat sequences within the individual cDNA can be aligned to generate highly accurate consensus sequences. We compared our sequencing strategy with other sRNA sequencing methods on a short-read sequencing platform and demonstrated that SR-Cat-Seq can obtain low bias and highly accurate sRNA transcriptomes. Therefore, our method could enable nanopore sequencing for sRNA-based diagnostics and other applications.


Assuntos
Sequenciamento por Nanoporos , Pequeno RNA não Traduzido , Biomarcadores , DNA Complementar/genética , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Pequeno RNA não Traduzido/genética , Transcrição Reversa
3.
Nucleic Acids Res ; 50(1): e2, 2022 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-34581823

RESUMO

Template-switching reverse transcription is widely used in RNA sequencing for low-input and low-quality samples, including RNA from single cells or formalin-fixed paraffin-embedded (FFPE) tissues. Previously, we identified the native eukaryotic mRNA 5' cap as a key structural element for enhancing template switching efficiency. Here, we introduce CapTS-seq, a new strategy for sequencing small RNAs that combines chemical capping and template switching. We probed a variety of non-native synthetic cap structures and found that an unmethylated guanosine triphosphate cap led to the lowest bias and highest efficiency for template switching. Through cross-examination of different nucleotides at the cap position, our data provided unequivocal evidence that the 5' cap acts as a template for the first nucleotide in reverse transcriptase-mediated post-templated addition to the emerging cDNA-a key feature to propel template switching. We deployed CapTS-seq for sequencing synthetic miRNAs, human total brain and liver FFPE RNA, and demonstrated that it consistently improves library quality for miRNAs in comparison with a gold standard template switching-based small RNA-seq kit.


Assuntos
Capuzes de RNA/metabolismo , RNA/análise , Análise de Sequência de RNA/métodos , Humanos , Fixação de Tecidos
4.
Mol Biol Evol ; 38(11): 5082-5091, 2021 10 27.
Artigo em Inglês | MEDLINE | ID: mdl-34352104

RESUMO

The RNA-dependent RNA polymerase (RdRp) of all known double-stranded RNA viruses is located within the viral particle and is responsible for the transcription and replication of the viral genome. Through an RT-PCR assay, we determined that purified virions, in vitro translated RdRp proteins, and purified recombinant RdRp proteins of partitiviruses also have reverse transcriptase (RT) function. We show that partitivirus RdRps 1) synthesized DNA from homologous and heterologous dsRNA templates; 2) are active using both ssRNA and dsRNA templates; and 3) are active at lower temperatures compared to an optimal reaction temperature of commercial RT enzymes. This finding poses an intriguing question: why do partitiviruses, with dsRNA genomes, have a polymerase with RT functions? In comparison, 3Dpol, the RdRp of poliovirus, did not show any RT activity. Our findings lead us to propose a new evolutionary model for RNA viruses where the RdRp of dsRNA viruses could be the ancestor of RdRps.


Assuntos
Vírus de RNA , DNA Polimerase Dirigida por RNA , Genoma Viral , Vírus de RNA/genética , RNA de Cadeia Dupla/genética , RNA Viral/genética , RNA Polimerase Dependente de RNA/genética , DNA Polimerase Dirigida por RNA/genética
5.
Genome Res ; 31(7): 1280-1289, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34140313

RESUMO

Bisulfite sequencing detects 5mC and 5hmC at single-base resolution. However, bisulfite treatment damages DNA, which results in fragmentation, DNA loss, and biased sequencing data. To overcome these problems, enzymatic methyl-seq (EM-seq) was developed. This method detects 5mC and 5hmC using two sets of enzymatic reactions. In the first reaction, TET2 and T4-BGT convert 5mC and 5hmC into products that cannot be deaminated by APOBEC3A. In the second reaction, APOBEC3A deaminates unmodified cytosines by converting them to uracils. Therefore, these three enzymes enable the identification of 5mC and 5hmC. EM-seq libraries were compared with bisulfite-converted DNA, and each library type was ligated to Illumina adaptors before conversion. Libraries were made using NA12878 genomic DNA, cell-free DNA, and FFPE DNA over a range of DNA inputs. The 5mC and 5hmC detected in EM-seq libraries were similar to those of bisulfite libraries. However, libraries made using EM-seq outperformed bisulfite-converted libraries in all specific measures examined (coverage, duplication, sensitivity, etc.). EM-seq libraries displayed even GC distribution, better correlations across DNA inputs, increased numbers of CpGs within genomic features, and accuracy of cytosine methylation calls. EM-seq was effective using as little as 100 pg of DNA, and these libraries maintained the described advantages over bisulfite sequencing. EM-seq library construction, using challenging samples and lower DNA inputs, opens new avenues for research and clinical applications.

6.
Genome Res ; 31(2): 291-300, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33468551

RESUMO

The predominant methodology for DNA methylation analysis relies on the chemical deamination by sodium bisulfite of unmodified cytosine to uracil to permit the differential readout of methylated cytosines. Bisulfite treatment damages the DNA, leading to fragmentation and loss of long-range methylation information. To overcome this limitation of bisulfite-treated DNA, we applied a new enzymatic deamination approach, termed enzymatic methyl-seq (EM-seq), to long-range sequencing technologies. Our methodology, named long-read enzymatic modification sequencing (LR-EM-seq), preserves the integrity of DNA, allowing long-range methylation profiling of 5-methylcytosine (5mC) and 5-hydroxymethylcytosine (5hmC) over multikilobase length of genomic DNA. When applied to known differentially methylated regions (DMRs), LR-EM-seq achieves phasing of >5 kb, resulting in broader and better defined DMRs compared with that previously reported. This result showed the importance of phasing methylation for biologically relevant questions and the applicability of LR-EM-seq for long-range epigenetic analysis at single-molecule and single-nucleotide resolution.

7.
Nucleic Acids Res ; 48(14): e80, 2020 08 20.
Artigo em Inglês | MEDLINE | ID: mdl-32496547

RESUMO

Small RNAs are important regulators of gene expression and are involved in human development and disease. Next generation sequencing (NGS) allows for scalable, genome-wide studies of small RNA; however, current methods are challenged by low sensitivity and high bias, limiting their ability to capture an accurate representation of the cellular small RNA population. Several studies have shown that this bias primarily arises during the ligation of single-strand adapters during library preparation, and that this ligation bias is magnified by 2'-O-methyl modifications (2'OMe) on the 3' terminal nucleotide. In this study, we developed a novel library preparation process using randomized splint ligation with a cleavable adapter, a design which resolves previous challenges associated with this ligation strategy. We show that a randomized splint ligation based workflow can reduce bias and increase the sensitivity of small RNA sequencing for a wide variety of small RNAs, including microRNA (miRNA) and tRNA fragments as well as 2'OMe modified RNA, including Piwi-interacting RNA and plant miRNA. Finally, we demonstrate that this workflow detects more differentially expressed miRNA between tumorous and matched normal tissues. Overall, this library preparation process allows for highly accurate small RNA sequencing and will enable studies of 2'OMe modified RNA with new levels of detail.


Assuntos
Biblioteca Gênica , Pequeno RNA não Traduzido/isolamento & purificação , Análise de Sequência de RNA/métodos , Eletroforese Capilar , Feminino , Humanos , Masculino , Metilação , MicroRNAs/química , MicroRNAs/genética , MicroRNAs/isolamento & purificação , Hibridização de Ácido Nucleico , Oligorribonucleotídeos/química , RNA Neoplásico/química , RNA Neoplásico/genética , RNA Neoplásico/isolamento & purificação , RNA de Plantas/química , RNA de Plantas/genética , RNA de Plantas/isolamento & purificação , Pequeno RNA não Traduzido/química , Pequeno RNA não Traduzido/genética , RNA de Transferência/química , RNA de Transferência/isolamento & purificação , Distribuição Aleatória , Sensibilidade e Especificidade , Alinhamento de Sequência
8.
J Biol Chem ; 294(48): 18220-18231, 2019 11 29.
Artigo em Inglês | MEDLINE | ID: mdl-31640989

RESUMO

Single-cell RNA-Seq (scRNA-Seq) has led to an unprecedented understanding of gene expression and regulation in individual cells. Many scRNA-Seq approaches rely upon the template switching property of Moloney murine leukemia virus (MMLV)-type reverse transcriptases. Template switching is believed to happen in a sequential process involving nontemplated addition of three protruding nucleotides (+CCC) to the 3'-end of the nascent cDNA, which can then anneal to the matching rGrGrG 3'-end of the template-switching oligo (TSO), allowing the reverse transcriptase (RT) to switch templates and continue copying the TSO sequence. In this study, we present a detailed analysis of template switching biases with respect to the RNA template, specifically of the role of the sequence and nature of its 5'-end (capped versus noncapped) in these biases. Our findings confirmed that the presence of a 5'-m7G cap enhances template switching efficiency. We also profiled the composition of the nontemplated addition in the absence of TSO and observed that the 5'-end of RNA template influences the terminal transferase activity of the RT. Furthermore, we found that designing new TSOs that pair with the most common nontemplated additions did little to improve template switching efficiency. Our results provide evidence suggesting that, in contrast to the current understanding of the template switching process, nontemplated addition and template switching are concurrent and competing processes.


Assuntos
DNA Complementar/química , DNA Viral/química , Vírus da Leucemia Murina de Moloney/enzimologia , RNA Viral/química , DNA Polimerase Dirigida por RNA/química , Transcrição Reversa , DNA Complementar/biossíntese , DNA Viral/biossíntese , Motivos de Nucleotídeos , RNA Viral/metabolismo , DNA Polimerase Dirigida por RNA/metabolismo
9.
J Am Chem Soc ; 138(30): 9345-8, 2016 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-27362828

RESUMO

The ten-eleven translocation (TET) proteins catalyze oxidation of 5-methylcytosine ((5m)C) residues in nucleic acids to 5-hydroxymethylcytosine ((5hm)C), 5-formylcytosine ((5f)C), and 5-carboxycytosine ((5ca)C). These nucleotide bases have been implicated as intermediates on the path to active demethylation, but recent reports have suggested that they might have specific regulatory roles in their own right. In this study, we present kinetic evidence showing that the catalytic domains (CDs) of TET2 and TET1 from mouse and their homologue from Naegleria gruberi, the full-length protein NgTET1, are distributive in both chemical and physical senses, as they carry out successive oxidations of a single (5m)C and multiple (5m)C residues along a polymethylated DNA substrate. We present data showing that the enzyme neither retains (5hm)C/(5f)C intermediates of preceding oxidations nor slides along a DNA substrate (without releasing it) to process an adjacent (5m)C residue. These findings contradict a recent report by Crawford et al. ( J. Am. Chem. Soc. 2016 , 138 , 730 ) claiming that oxidation of (5m)C by CD of mouse TET2 is chemically processive (iterative). We further elaborate that this distributive mechanism is maintained for TETs in two evolutionarily distant homologues and posit that this mode of function allows the introduction of (5m)C forms as epigenetic markers along the DNA.


Assuntos
5-Metilcitosina/metabolismo , Domínio Catalítico , Proteínas de Ligação a DNA/metabolismo , Epigênese Genética , Ferro/metabolismo , Ácidos Cetoglutáricos/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , Animais , Proteínas de Ligação a DNA/química , Dioxigenases , Camundongos , Naegleria/enzimologia , Oxirredução , Proteínas Proto-Oncogênicas/química
10.
Proc Natl Acad Sci U S A ; 112(14): 4316-21, 2015 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-25831492

RESUMO

Modified DNA bases in mammalian genomes, such as 5-methylcytosine ((5m)C) and its oxidized forms, are implicated in important epigenetic regulation processes. In human or mouse, successive enzymatic conversion of (5m)C to its oxidized forms is carried out by the ten-eleven translocation (TET) proteins. Previously we reported the structure of a TET-like (5m)C oxygenase (NgTET1) from Naegleria gruberi, a single-celled protist evolutionarily distant from vertebrates. Here we show that NgTET1 is a 5-methylpyrimidine oxygenase, with activity on both (5m)C (major activity) and thymidine (T) (minor activity) in all DNA forms tested, and provide unprecedented evidence for the formation of 5-formyluridine ((5f)U) and 5-carboxyuridine ((5ca)U) in vitro. Mutagenesis studies reveal a delicate balance between choice of (5m)C or T as the preferred substrate. Furthermore, our results suggest substrate preference by NgTET1 to (5m)CpG and TpG dinucleotide sites in DNA. Intriguingly, NgTET1 displays higher T-oxidation activity in vitro than mammalian TET1, supporting a closer evolutionary relationship between NgTET1 and the base J-binding proteins from trypanosomes. Finally, we demonstrate that NgTET1 can be readily used as a tool in (5m)C sequencing technologies such as single molecule, real-time sequencing to map (5m)C in bacterial genomes at base resolution.


Assuntos
5-Metilcitosina/química , Naegleria/enzimologia , Oxigenases/química , Proteínas de Protozoários/química , Algoritmos , Animais , Citosina/química , DNA/química , Proteínas de Ligação a DNA/química , Epigênese Genética , Epigenômica , Humanos , Camundongos , Oxigenases de Função Mista/química , Mutação , Oxigênio/química , Filogenia , Proteínas Proto-Oncogênicas/química , Análise de Sequência de DNA , Timidina/química
11.
Mol Cell ; 57(4): 750-761, 2015 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-25639471

RESUMO

Mapping genome-wide 5-hydroxymethylcytosine (5hmC) and 5-formylcytosine (5fC) at single-base resolution is important to understand their biological functions. We present a cost-efficient mapping method that combines 5hmC-specific restriction enzyme PvuRts1I with a 5hmC chemical labeling enrichment method. The sensitive method enables detection of low-abundance 5hmC sites, providing a more complete 5hmC landscape than available bisulfite-based methods. This method generated a genome-wide 5fC map at single-base resolution. Parallel analyses revealed that 5hmC and 5fC in non-CpG context exhibit lower abundance, more dynamically, than those in CpG context. In the genic region, distribution of 5hmCpG and 5fCpG differed from 5hmCH and 5fCH (H = A, T, C). 5hmC and 5fC were distributed distinctly at regulatory protein-DNA binding sites, depleted in permissive transcription factor binding sites, and enriched at active and poised enhancers. This sensitive bisulfite conversion-free method can be applied to biological samples with limited starting material or low-abundance cytosine modifications.


Assuntos
Citosina/análogos & derivados , Mapeamento por Restrição/métodos , 5-Metilcitosina/análogos & derivados , Animais , Sequência de Bases , Citosina/química , Enzimas de Restrição do DNA/química , Células-Tronco Embrionárias , Epigênese Genética , Biblioteca Gênica , Histonas/metabolismo , Camundongos
12.
Cell Rep ; 7(5): 1353-1361, 2014 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-24882006

RESUMO

5-Methylcytosine (5mC) is an epigenetic modification involved in regulation of gene activity during differentiation. Tet dioxygenases oxidize 5mC to 5-hydroxymethylcytosine (5hmC), 5-formylcytosine (5fC), and 5-carboxylcytosine (5caC). Both 5fC and 5caC can be excised from DNA by thymine-DNA glycosylase (TDG) followed by regeneration of unmodified cytosine via the base excision repair pathway. Despite evidence that this mechanism is operative in embryonic stem cells, the role of TDG-dependent demethylation in differentiation and development is currently unclear. Here, we demonstrate that widespread oxidation of 5hmC to 5caC occurs in postimplantation mouse embryos. We show that 5fC and 5caC are transiently accumulated during lineage specification of neural stem cells (NSCs) in culture and in vivo. Moreover, 5caC is enriched at the cell-type-specific promoters during differentiation of NSCs, and TDG knockdown leads to increased 5fC/5caC levels in differentiating NSCs. Our data suggest that active demethylation contributes to epigenetic reprogramming determining lineage specification in embryonic brain.


Assuntos
Linhagem da Célula , Citosina/análogos & derivados , Metilação de DNA , Células-Tronco Neurais/metabolismo , Animais , Células Cultivadas , Citosina/metabolismo , Células-Tronco Embrionárias/citologia , Células-Tronco Embrionárias/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Humanos , Células-Tronco Neurais/citologia , Neurogênese , Timina DNA Glicosilase/metabolismo
13.
Nucleic Acids Res ; 42(12): 7947-59, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24895434

RESUMO

AbaSI, a member of the PvuRts1I-family of modification-dependent restriction endonucleases, cleaves deoxyribonucleic acid (DNA) containing 5-hydroxymethylctosine (5hmC) and glucosylated 5hmC (g5hmC), but not DNA containing unmodified cytosine. AbaSI has been used as a tool for mapping the genomic locations of 5hmC, an important epigenetic modification in the DNA of higher organisms. Here we report the crystal structures of AbaSI in the presence and absence of DNA. These structures provide considerable, although incomplete, insight into how this enzyme acts. AbaSI appears to be mainly a homodimer in solution, but interacts with DNA in our structures as a homotetramer. Each AbaSI subunit comprises an N-terminal, Vsr-like, cleavage domain containing a single catalytic site, and a C-terminal, SRA-like, 5hmC-binding domain. Two N-terminal helices mediate most of the homodimer interface. Dimerization brings together the two catalytic sites required for double-strand cleavage, and separates the 5hmC binding-domains by ∼70 Å, consistent with the known activity of AbaSI which cleaves DNA optimally between symmetrically modified cytosines ∼22 bp apart. The eukaryotic SET and RING-associated (SRA) domains bind to DNA containing 5-methylcytosine (5mC) in the hemi-methylated CpG sequence. They make contacts in both the major and minor DNA grooves, and flip the modified cytosine out of the helix into a conserved binding pocket. In contrast, the SRA-like domain of AbaSI, which has no sequence specificity, contacts only the minor DNA groove, and in our current structures the 5hmC remains intra-helical. A conserved, binding pocket is nevertheless present in this domain, suitable for accommodating 5hmC and g5hmC. We consider it likely, therefore, that base-flipping is part of the recognition and cleavage mechanism of AbaSI, but that our structures represent an earlier, pre-flipped stage, prior to actual recognition.


Assuntos
Citosina/análogos & derivados , Enzimas de Restrição do DNA/química , DNA/química , 5-Metilcitosina/análogos & derivados , Proteínas Estimuladoras de Ligação a CCAAT , Citosina/química , Citosina/metabolismo , Clivagem do DNA , Enzimas de Restrição do DNA/metabolismo , Dimerização , Endodesoxirribonucleases/química , Modelos Moleculares , Proteínas Nucleares/química , Estrutura Terciária de Proteína , Ubiquitina-Proteína Ligases
14.
Sci Rep ; 4: 3838, 2014 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-24452415

RESUMO

Tth111II is a thermostable Type IIGS restriction enzyme that recognizes DNA sites CAARCA (R = A or G) and cleaves downstream at N11/N9. Here, the tth111IIRM gene was cloned and expressed in E. coli, and Tth111II was purified. The purified enzyme contains internally-bound S-adenosylmethionine (SAM). When the internal SAM was removed, the endonuclease activity was stimulated by adding SAM or its analog sinefungin. The cleavage intermediate is mostly top-strand nicked DNA on a single-site plasmid. Addition of duplex oligos with a cognate site stimulates cleavage activity of the one-site substrate. Tth111II cleaves a two-site plasmid DNA with equal efficiency regardless of site orientation. We propose the top-strand nicking is carried out by a Tth111II monomer and bottom-strand cleavage is carried out by a transient dimer. Tth111II methylates cleavage product-like duplex oligos CAAACAN9, but the modification rate is estimated to be much slower than the top-strand nicking rate. We cloned and sequenced a number of Tth111II star sites which are 1-bp different from the cognate sites. A biochemical pathway is proposed for the restriction and methylation activities of Tth111II.


Assuntos
DNA/química , DNA/metabolismo , Desoxirribonucleases de Sítio Específico do Tipo II/química , Desoxirribonucleases de Sítio Específico do Tipo II/metabolismo , Thermus thermophilus/enzimologia , Sequência de Bases , DNA/genética , Desoxirribonucleases de Sítio Específico do Tipo II/genética , Dados de Sequência Molecular , Plasmídeos/genética , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , S-Adenosilmetionina/metabolismo , Homologia de Sequência do Ácido Nucleico , Especificidade por Substrato , Thermus thermophilus/genética
15.
Cell Rep ; 3(2): 567-76, 2013 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-23352666

RESUMO

We describe the use of a unique DNA-modification-dependent restriction endonuclease AbaSI coupled with sequencing (Aba-seq) to map high-resolution hydroxymethylome of mouse E14 embryonic stem cells. The specificity of AbaSI enables sensitive detection of 5-hydroxymethylcytosine (5hmC) at low-occupancy regions. Bioinformatic analysis suggests 5hmCs in genic regions closely follow the 5mC distribution. 5hmC is generally depleted in CpG islands and only enriched in a small set of repetitive elements. A regularly spaced and oscillating 5hmC pattern was observed at the binding sites of CTCF. 5hmC is enriched at the poised enhancers with the monomethylated histone H3 lysine 4 (H3K4me1) marks, but not at the active enhancers with the acetylated histone H3 lysine 27 (H3K27Ac) marks. Non-CG hydroxymethylation appears to be prevalent in the mitochondrial genome. We propose that some amounts of transiently stable 5hmCs may indicate a poised epigenetic state or demethylation intermediate, whereas others may suggest a locally accessible chromosomal environment for the TET enzymatic apparatus.


Assuntos
Mapeamento Cromossômico , Citosina/análogos & derivados , Enzimas de Restrição do DNA/metabolismo , Células-Tronco Embrionárias/metabolismo , Análise de Sequência de DNA , 5-Metilcitosina/análogos & derivados , Animais , Linhagem Celular , Biologia Computacional , Ilhas de CpG , Citosina/análise , Metilação de DNA , Células-Tronco Embrionárias/citologia , Genômica , Histonas/metabolismo , Hidroxilação , Camundongos
16.
Nucleic Acids Res ; 39(21): 9294-305, 2011 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-21813453

RESUMO

PvuRts1I is a modification-dependent restriction endonuclease that recognizes 5-hydroxymethylcytosine (5hmC) as well as 5-glucosylhydroxymethylcytosine (5ghmC) in double-stranded DNA. Using PvuRts1I as the founding member, we define a family of homologous proteins with similar DNA modification-dependent recognition properties. At the sequence level, these proteins share a few uniquely conserved features. We show that these enzymes introduce a double-stranded cleavage at the 3'-side away from the recognized modified cytosine. The distances between the cleavage sites and the modified cytosine are fixed within a narrow range, with the majority being 11-13 nt away in the top strand and 9-10 nt away in the bottom strand. The recognition sites of these enzymes generally require two cytosines on opposite strand around the cleavage sites, i.e. 5'-CN(11-13)↓N(9-10)G-3'/3'-GN(9-10)↓N(11-13)C-5', with at least one cytosine being modified for efficient cleavage. As one potential application for these enzymes is to provide useful tools for selectively mapping 5hmC sites, we have compared the relative selectivity of a few PvuRts1I family members towards different forms of modified cytosines. Our results show that the inherently different relative selectivity towards modified cytosines can have practical implications for their application. By using AbaSDFI, a PvuRts1I homolog with the highest relative selectivity towards 5ghmC, to analyze rat brain DNA, we show it is feasible to map genomic 5hmC sites close to base resolution. Our study offers unique tools for determining more accurate hydroxymethylomes in mammalian cells.


Assuntos
Citosina/análogos & derivados , Enzimas de Restrição do DNA/metabolismo , 5-Metilcitosina/análogos & derivados , Sequência de Aminoácidos , Animais , Mapeamento Cromossômico , Sequência Conservada , Citosina/análise , Citosina/metabolismo , Clivagem do DNA , Enzimas de Restrição do DNA/química , Enzimas de Restrição do DNA/classificação , Genômica , Dados de Sequência Molecular , Ratos , Especificidade por Substrato
17.
PLoS One ; 5(7): e11787, 2010 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-20668693

RESUMO

The Type IIS restriction endonuclease BtsI recognizes and digests at GCAGTG(2/0). It comprises two subunits: BtsIA and BtsIB. The BtsIB subunit contains the recognition domain, one catalytic domain for bottom strand nicking and part of the catalytic domain for the top strand nicking. BtsIA has the rest of the catalytic domain that is responsible for the DNA top strand nicking. BtsIA alone has no activity unless it mixes with BtsIB to reconstitute the BtsI activity. During characterization of the enzyme, we identified a BtsIB mutant R119A found to have a different digestion pattern from the wild type BtsI. After characterization, we found that BtsIB(R119A) is a novel restriction enzyme with a previously unreported recognition sequence CAGTG(2/0), which is named as BtsI-1. Compared with wild type BtsI, BtsI-1 showed different relative activities in NEB restriction enzyme reaction buffers NEB1, NEB2, NEB3 and NEB4 and less star activity. Similar to the wild type BtsIB subunit, the BtsI-1 B subunit alone can act as a bottom nicking enzyme recognizing CAGTG(-/0). This is the first successful case of a specificity change among this restriction endonuclease type.


Assuntos
Enzimas de Restrição do DNA/metabolismo , Bacillus/enzimologia , Domínio Catalítico , Enzimas de Restrição do DNA/genética , Mutagênese Sítio-Dirigida , Análise de Sequência de DNA
18.
J Invest Dermatol ; 129(8): 1909-20, 2009 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-19242519

RESUMO

Platelet-derived growth factor BB (PDGF-BB) is a Food and Drug Administration (FDA)-approved growth factor, acting as a mitogen and motogen of dermal fibroblasts (DFs), for skin wound healing. The two closely related SH2/SH3 adapter proteins, Nckalpha and Nckbeta, connect PDGF-BB signaling to the actin cytoskeleton and cell motility. The mechanism has not been fully understood. In this study, we investigated, side by side, the roles of Nckalpha and Nckbeta in PDGF-BB-stimulated DF migration. We found that cells expressing the PDGFRbeta-Y751F mutant (preventing Nckalpha binding) or PDGFRbeta-Y1009F mutant (preventing Nckbeta binding), DF cells isolated from Nckalpha- or Nckbeta-knockout mice, and primary human DF cells with RNA interference (RNAi) knockdown of the endogenous Nckalpha or Nckbeta all failed to migrate in response to PDGF-BB. Overexpression of the middle SH3 domain of Nckalpha or Nckbeta alone in human DFs also blocked PDGF-BB-induced cell migration. However, neither Nckalpha nor Nckbeta was required for the activation of the PDGF receptor, p21-activated protein kinase (Pak1), AKT, extracellular signal-regulated kinase (ERK) 1/2, or p38MAP by PDGF-BB. Although PDGF-BB stimulated the membrane translocation of both Nckalpha and Nckbeta, Nckalpha appeared to mediate Cdc42 signaling for filopodium formation, whereas Nckbeta mediated Rho signaling to induce stress fibers. Thus, this study has elucidated the independent roles and mechanisms of action of Nckalpha and Nckbeta in DF migration, which is critical for wound healing.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/fisiologia , Proteínas Oncogênicas/fisiologia , Fator de Crescimento Derivado de Plaquetas/farmacologia , Transdução de Sinais/fisiologia , Cicatrização , Animais , Becaplermina , Movimento Celular , Fibroblastos/efeitos dos fármacos , Fibroblastos/fisiologia , Humanos , Camundongos , Proteínas Proto-Oncogênicas c-sis , Pele/citologia , Proteína cdc42 de Ligação ao GTP/fisiologia , Proteína rhoA de Ligação ao GTP/fisiologia , Domínios de Homologia de src
19.
Am J Pathol ; 173(2): 575-85, 2008 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-18599610

RESUMO

Growing evidence suggests that survivin, a member of the inhibitor of apoptosis gene family, is responsible for drug resistance in cancer cells, yet little is known about its role in the endothelial cells of the tumor vasculature. We have previously reported that tumor-associated endothelial cells derived from gliomas (TuBECs) are resistant to anticancer chemotherapy whereas normal brain endothelial cells (BECs) are sensitive. The focus of this study is to investigate the mechanism behind this chemoresistance. Here we show that survivin is constitutively overexpressed in the glioma vasculature but not in the blood vessels of normal brain. To determine whether survivin contributes to TuBEC chemoresistance, we used a lentiviral siRNA system or the drug roscovitine to down-regulate survivin expression. Reduced levels of survivin sensitized TuBECs to the chemotherapeutic agents VP-16, paclitaxel, thapsigargin, and temozolomide. This cell death was mediated through caspases 7 and 4. Conversely, forced expression of survivin in BECs was protective against drug cytotoxicity. These data suggest that overexpression of survivin in endothelial cells serves as a protective mechanism that defends the vasculature from drug cytotoxicity. Our studies demonstrate that targeting survivin may be an effective approach to chemosensitization and anti-vascular therapy for brain tumors.


Assuntos
Antineoplásicos/farmacologia , Neoplasias Encefálicas/irrigação sanguínea , Encéfalo/irrigação sanguínea , Resistencia a Medicamentos Antineoplásicos/fisiologia , Células Endoteliais/efeitos dos fármacos , Glioma/irrigação sanguínea , Proteínas Associadas aos Microtúbulos/biossíntese , Proteínas de Neoplasias/biossíntese , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Células Endoteliais/metabolismo , Células Endoteliais/patologia , Endotélio Vascular/patologia , Humanos , Proteínas Inibidoras de Apoptose , Survivina
20.
Nucleic Acids Res ; 36(9): e50, 2008 May.
Artigo em Inglês | MEDLINE | ID: mdl-18413342

RESUMO

Restriction endonucleases are the basic tools of molecular biology. Many restriction endonucleases show relaxed sequence recognition, called star activity, as an inherent property under various digestion conditions including the optimal ones. To quantify this property we propose the concept of the Fidelity Index (FI), which is defined as the ratio of the maximum enzyme amount showing no star activity to the minimum amount needed for complete digestion at the cognate recognition site for any particular restriction endonuclease. Fidelity indices for a large number of restriction endonucleases are reported here. The effects of reaction vessel, reaction volume, incubation mode, substrate differences, reaction time, reaction temperature and additional glycerol, DMSO, ethanol and Mn(2+) on the FI are also investigated. The FI provides a practical guideline for the use of restriction endonucleases and defines a fundamental property by which restriction endonucleases can be characterized.


Assuntos
Enzimas de Restrição do DNA/análise , Soluções Tampão , DNA/química , DNA/metabolismo , Enzimas de Restrição do DNA/classificação , Enzimas de Restrição do DNA/metabolismo , DNA Super-Helicoidal/metabolismo , Reação em Cadeia da Polimerase , Especificidade por Substrato , Temperatura , Terminologia como Assunto
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA