Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 166
Filtrar
1.
iScience ; 27(4): 109506, 2024 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-38715945

RESUMO

It is imperative to explore biomarkers that are both precise and readily accessible in the comprehensive management of breast cancer. A multicenter cohort, including 512 breast cancer patients and 198 nonneoplastic individuals, was recruited to detect the level of tumor-derived extracellular vesicles using our method based on dual DNA tetrahedral nanostructures. The level of tumor-derived extracellular vesicles was significantly higher in newly diagnosed breast cancer patients than in nonneoplastic individuals at a cutoff value of 3.58 U/µL. For postoperative metastasis monitoring, the level of tumor-derived extracellular vesicles was significantly higher in breast cancer patients with metastasis than in those without metastasis at a cutoff value of 3.91 U/µL. Its efficacy of diagnosis and metastasis monitoring was superior to traditional tumor markers. Elevated level of tumor-derived extracellular vesicles served as a predictive biomarker for diagnosis and metastasis monitoring in breast cancer patients.

2.
Acta Pharmacol Sin ; 2024 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-38760544

RESUMO

Cardiac fibrosis is a detrimental pathological process, which constitutes the key factor for adverse cardiac structural remodeling leading to heart failure and other critical conditions. Circular RNAs (circRNAs) have emerged as important regulators of various cardiovascular diseases. It is known that several circRNAs regulate gene expression and pathological processes by binding miRNAs. In this study we investigated whether a novel circRNA, named circNSD1, and miR-429-3p formed an axis that controls cardiac fibrosis. We established a mouse model of myocardial infarction (MI) for in vivo studies and a cellular model of cardiac fibrogenesis in primary cultured mouse cardiac fibroblasts treated with TGF-ß1. We showed that miR-429-3p was markedly downregulated in the cardiac fibrosis models. Through gain- and loss-of-function studies we confirmed miR-429-3p as a negative regulator of cardiac fibrosis. In searching for the upstream regulator of miR-429-3p, we identified circNSD1 that we subsequently demonstrated as an endogenous sponge of miR-429-3p. In MI mice, knockdown of circNSD1 alleviated cardiac fibrosis. Moreover, silence of human circNSD1 suppressed the proliferation and collagen production in human cardiac fibroblasts in vitro. We revealed that circNSD1 directly bound miR-429-3p, thereby upregulating SULF1 expression and activating the Wnt/ß-catenin pathway. Collectively, circNSD1 may be a novel target for the treatment of cardiac fibrosis and associated cardiac disease.

3.
iScience ; 27(5): 109547, 2024 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-38660400

RESUMO

Circulating tumor cell clusters/micro-emboli (CTM) possess greater metastatic capacity and survival advantage compared to individual circulating tumor cell (CTC). However, the formation of CTM subtypes and their role in tumor metastasis remain unclear. In this study, we used a microfluidic Cluster-Chip with easy operation and high efficiency to isolate CTM from peripheral blood, which confirmed their correlation with clinicopathological features and identified the critical role of CTC-platelet clusters in breast cancer metastasis. The correlation between platelets and CTM function was further confirmed in a mouse model and RNA sequencing of CTM identified high-expressed genes related to hypoxia stimulation and platelet activation which possibly suggested the correlation of hypoxia and CTC-platelet cluster formation. In conclusion, we successfully developed the Cluster-Chip platform to realize the clinical capture of CTMs and analyze the biological properties of CTC-platelet clusters, which could benefit the design of potential treatment regimens to prevent CTM-mediated metastasis and tumor malignant progression.

4.
Clin Breast Cancer ; 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38616444

RESUMO

BACKGROUND: Early diagnosis of breast cancer is critical to the treatment and prognosis of breast cancer patients. Our aim is to explore more practical and effective diagnostic methods to facilitate early treatment and improve prognosis for breast cancer patients. MATERIALS AND METHODS: The Mann-Whitney U test, receiver operating characteristic curve, Youden index, Chi-square test, and Fisher's exact test were used to determine whether plasma thioredoxin reductase (TrxR) could be used for the clinical diagnosis of breast cancer. The Wilcoxon signed-rank test was used to validate the prognostic potential of plasma TrxR activity assessment. RESULTS: A total of 761 patients were included, including 537 cases of breast cancer and 224 cases of benign breast diseases. Plasma TrxR activity in the breast cancer group [8.0 (6.0, 9.45) U/mL] was significantly higher than that in the benign group [3.05 (1.20, 6.275) U/mL]. The diagnostic efficiency of TrxR for breast cancer was higher than that of other conventional breast cancer biomarkers, with an area under the curve of 0.821 (95% CI = 0.791-0.852). In addition, TrxR can be used in combination with conventional tumor markers to further improve the diagnostic efficiency. The optimal TrxR threshold for identifying benign and malignant diseases is 7.45 U/mL. We detected plasma TrxR activity and serum tumor markers before and after antitumor therapies in 333 breast cancer patients and found that their trends were basically the same, with a significant decrease in plasma TrxR activity after treatment. CONCLUSION: Plasma TrxR activity can be used as a suitable biomarker for breast cancer diagnosis and efficacy assessment.

6.
Cell Commun Signal ; 22(1): 55, 2024 01 19.
Artigo em Inglês | MEDLINE | ID: mdl-38243240

RESUMO

Breast cancer, a highly fatal disease due to its tendency to metastasize, is the most prevalent form of malignant tumors among women worldwide. Numerous studies indicate that breast cancer exhibits a unique predilection for metastasis to specific organs including the bone, liver, lung, and brain. However, different types of, The understanding of the heterogeneity of metastatic breast cancer has notably improved with the recent advances in high-throughput sequencing techniques. Focusing on the modification in the microenvironment of the metastatic organs and the crosstalk between tumor cells and in situ cells, noteworthy research points include the identification of two distinct modes of tumor growth in bone metastases, the influence of type II pneumocyte on lung metastases, the paradoxical role of Kupffer cells in liver metastases, and the breakthrough of the blood-brain barrier (BBB) breach in brain metastases. Overall, this review provides a comprehensive overview of the characteristics of breast cancer metastases, shedding light on the pivotal roles of immune and resident cells in the development of distinct metastatic foci.


Assuntos
Neoplasias Encefálicas , Neoplasias da Mama , Neoplasias Pulmonares , Melanoma , Feminino , Humanos , Neoplasias da Mama/patologia , Comunicação Celular , Neoplasias Pulmonares/patologia , Neoplasias Encefálicas/patologia , Microambiente Tumoral , Metástase Neoplásica
7.
Cancers (Basel) ; 16(2)2024 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-38254782

RESUMO

Breast cancer stem cells (BCSCs) is a subpopulation of cancer cells with self-renewal and differentiation capacity, have been suggested to give rise to tumor heterogeneity and biologically aggressive behavior. Accumulating evidence has shown that BCSCs play a fundamental role in tumorigenesis, progression, and recurrence. The development of immunotherapy, primarily represented by programmed cell death protein 1 (PD-1)/programmed death-ligand 1 (PD-L1) inhibitors, has greatly changed the treatment landscape of multiple malignancies. Recent studies have identified pervasive negative associations between cancer stemness and anticancer immunity. Stemness seems to play a causative role in the formation of cold tumor immune microenvironment (TIME). The multiple functions of long non-coding RNAs (lncRNAs) in regulating stemness and immune responses has been recently highlighted in breast cancer. The review focus on lncRNAs and keys pathways involved in the regulation of BCSCs and TIME. Potential clinical applications using lncRNAs as biomarkers or therapies will be discussed.

8.
Sci China Life Sci ; 67(4): 698-710, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38151609

RESUMO

Triple-negative breast cancer (TNBC) is the most challenging breast cancer subtype because of its aggressive behavior and limited therapeutic targets. c-Myc is hyperactivated in the majority of TNBC tissues, however, it has been considered an "undruggable" target due to its disordered structure. Herein, we developed an ultrasound-responsive spherical nucleic acid (SNA) against c-Myc and PD-L1 in TNBC. It is a self-assembled and carrier-free system composed of a hydrophilic small-interfering RNA (siRNA) shell and a hydrophobic core made of a peptide nucleic acid (PNA)-based antisense oligonucleotide (ASO) and a sonosensitizer. We accomplished significant enrichment in the tumor by enhanced permeability and retention (EPR) effect, the controllable release of effective elements by ultrasound activation, and the combination of targeted therapy, immunotherapy and physiotherapy. Our study demonstrated significant anti-tumoral effects in vitro and in vivo. Mass cytometry showed an invigorated tumor microenvironment (TME) characterized by a significant alteration in the composition of tumor-associated macrophages (TAM) and decreased proportion of PD-1-positive (PD-1+) T effector cells after appropriate treatment of the ultrasound-responsive SNA (USNA). Further experiments verified that tumor-conditioned macrophages residing in the TME were transformed into the anti-tumoral population. Our finding offers a novel therapeutic strategy against the "undruggable" c-Myc, develops a new targeted therapy for c-Myc/PD-L1 and provides a treatment option for the TNBC.


Assuntos
Ácidos Nucleicos , Neoplasias de Mama Triplo Negativas , Humanos , Neoplasias de Mama Triplo Negativas/terapia , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Antígeno B7-H1/genética , Receptor de Morte Celular Programada 1 , Macrófagos/patologia , Microambiente Tumoral , Linhagem Celular Tumoral
9.
Chin Med J (Engl) ; 137(3): 338-349, 2024 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-38105538

RESUMO

BACKGROUND: Triple-negative breast cancer (TNBC) is an aggressive type of breast cancer associated with poor prognosis and limited treatment options. The androgen receptor (AR) has emerged as a potential therapeutic target for luminal androgen receptor (LAR) TNBC. However, multiple studies have claimed that anti-androgen therapy for AR-positive TNBC only has limited clinical benefits. This study aimed to investigate the role of AR in TNBC and its detailed mechanism. METHODS: Immunohistochemistry and TNBC tissue sections were applied to investigate AR and nectin cell adhesion molecule 4 (NECTIN4) expression in TNBC tissues. Then, in vitro and in vivo assays were used to explore the function of AR and estrogen receptor beta (ERß) in TNBC. Chromatin immunoprecipitation sequencing (ChIP-seq), co-immunoprecipitation (co-IP), molecular docking method, and luciferase reporter assay were performed to identify key molecules that affect the function of AR. RESULTS: Based on the TNBC tissue array analysis, we revealed that ERß and AR were positive in 21.92% (32/146) and 24.66% (36/146) of 146 TNBC samples, respectively, and about 13.70% (20/146) of TNBC patients were ERß positive and AR positive. We further demonstrated the pro-tumoral effects of AR on TNBC cells, however, the oncogenic biology was significantly suppressed when ERß transfection in LAR TNBC cell lines but not in AR-negative TNBC. Mechanistically, we identified that NECTIN4 promoter -42 bp to -28 bp was an AR response element, and that ERß interacted with AR thus impeding the AR-mediated NECTIN4 transcription which promoted epithelial-mesenchymal transition in tumor progression. CONCLUSIONS: This study suggests that ERß functions as a suppressor mediating the effect of AR in TNBC prognosis and cell proliferation. Therefore, our current research facilitates a better understanding of the role and mechanisms of AR in TNBC carcinogenesis.


Assuntos
Androgênios , Neoplasias de Mama Triplo Negativas , Humanos , Androgênios/uso terapêutico , Receptor beta de Estrogênio/genética , Receptor beta de Estrogênio/metabolismo , Receptores Androgênicos/genética , Receptores Androgênicos/metabolismo , Receptores Androgênicos/uso terapêutico , Neoplasias de Mama Triplo Negativas/genética , Neoplasias de Mama Triplo Negativas/metabolismo , Simulação de Acoplamento Molecular , Linhagem Celular Tumoral
10.
Biochim Biophys Acta Rev Cancer ; 1878(5): 188962, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37541532

RESUMO

Reprogramming of the tumor microenvironment (TME) is a hallmark of cancer. Metabolic reprogramming is a vital approach to sustaining the energy supply in the TME. This alteration exists in both cancer cells and TME cells, collectively establishing an immunotolerant niche to facilitate tumor progression. Limited resources lead to metabolic competition and hinder the biological functions of anti-tumoral immunity. Reprogramming of lipid metabolism and tumor progression is closely related to each other. Due to the complexity of fatty acid (FA) types and the lack of an effective approach for detection, the mechanisms and effects of FA metabolic reprogramming have been unclear. Herein, we review FA metabolism in the tumor milieu, summarize how FA metabolic reprogramming influences antitumor immune response, suggest the mechanisms by which FAs affect immunotherapy against cancer, and discuss the potential of FA metabolism-based drugs in cancer treatment.


Assuntos
Metabolismo dos Lipídeos , Neoplasias , Neoplasias/imunologia , Neoplasias/metabolismo , Neoplasias/patologia , Neoplasias/terapia , Humanos , Animais , Microambiente Tumoral , Ácidos Graxos/metabolismo , Evasão Tumoral
11.
Acta Pharm Sin B ; 13(6): 2510-2543, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37425051

RESUMO

CRISPR, as an emerging gene editing technology, has been widely used in multiple fields due to its convenient operation, less cost, high efficiency and precision. This robust and effective device has revolutionized the development of biomedical research at an unexpected speed in recent years. The development of intelligent and precise CRISPR delivery strategies in a controllable and safe manner is the prerequisite for translational clinical medicine in gene therapy field. In this review, the therapeutic application of CRISPR delivery and the translational potential of gene editing was firstly discussed. Critical obstacles for the delivery of CRISPR system in vivo and shortcomings of CRISPR system itself were also analyzed. Given that intelligent nanoparticles have demonstrated great potential on the delivery of CRISPR system, here we mainly focused on stimuli-responsive nanocarriers. We also summarized various strategies for CIRSPR-Cas9 system delivered by intelligent nanocarriers which would respond to different endogenous and exogenous signal stimulus. Moreover, new genome editors mediated by nanotherapeutic vectors for gene therapy were also discussed. Finally, we discussed future prospects of genome editing for existing nanocarriers in clinical settings.

12.
J Transl Med ; 21(1): 409, 2023 06 23.
Artigo em Inglês | MEDLINE | ID: mdl-37353799

RESUMO

BACKGROUND: Intra-tumoral heterogeneity (ITH) is a distinguished hallmark of cancer, and cancer stem cells (CSCs) contribute to this malignant characteristic. Therefore, it is of great significance to investigate and even target the regulatory factors driving intra-tumoral stemness. c-Myc is a vital oncogene frequently overexpressed or amplified in various cancer types, including breast cancer. Our previous study indicated its potential association with breast cancer stem cell (BCSC) biomarkers. METHODS: In this research, we performed immunohistochemical (IHC) staining on sixty breast cancer surgical specimens for c-Myc, CD44, CD24, CD133 and ALDH1A1. Then, we analyzed transcriptomic atlas of 1533 patients with breast cancer from public database. RESULTS: IHC staining indicated the positive correlation between c-Myc and BCSC phenotype. Then, we used bioinformatic analysis to interrogate transcriptomics data of 1533 breast cancer specimens and identified an intriguing link among c-Myc, cancer stemness and copper-induced cell death (also known as "cuproptosis"). We screened out cuproptosis-related characteristics that predicts poor clinical outcomes and found that the pro-tumoral cuproptosis-based features were putatively enriched in MYC-targets and showed a significantly positive correlation with cancer stemness. CONCLUSION: In addition to previous reports on its oncogenic roles, c-Myc showed significant correlation to stemness phenotype and copper-induced cell toxicity in breast cancer tissues. Moreover, transcriptomics data demonstrated that pro-tumoral cuproptosis biomarkers had putative positive association with cancer stemness. This research combined clinical samples with large-scale bioinformatic analysis, covered description and deduction, bridged classic oncogenic mechanisms to innovative opportunities, and inspired the development of copper-based nanomaterials in targeting highly heterogeneous tumors.


Assuntos
Apoptose , Neoplasias da Mama , Células-Tronco Neoplásicas , Proteínas Proto-Oncogênicas c-myc , Cobre , Fenótipo , Proteínas Proto-Oncogênicas c-myc/genética , Proteínas Proto-Oncogênicas c-myc/metabolismo , Humanos , Feminino
13.
J Am Chem Soc ; 145(16): 9334-9342, 2023 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-37068218

RESUMO

Triple-negative breast cancer (TNBC) is highly aggressive with a poor clinical prognosis and no targeted therapy. The c-Myc protein is a master transcription factor and a potential therapeutic target for TNBC. In this study, we develop a PROTAC (PROteolysis TArgeting Chimera) based on TNA (threose nucleic acid) and DNA that effectively targets and degrades c-Myc. The TNA aptamer is selected in vitro to bind the c-Myc/Max heterodimer and appended to the E-box DNA sequence to create a high-affinity, biologically stable bivalent binder. The TNA-E box-pomalidomide (TEP) conjugate specifically degrades endogenous c-Myc/Max, inhibits TNBC cell proliferation, and sensitizes TNBC cells to the cyclin-dependent kinase inhibitor palbociclib in vitro. In a mouse TNBC model, combination therapy with TEP and palbociclib potently suppresses tumor growth. This study offers a promising nucleic acid-based PROTAC modality for both chemical biology studies and therapeutic interventions of TNBC.


Assuntos
Antineoplásicos , Neoplasias de Mama Triplo Negativas , Animais , Humanos , Camundongos , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Linhagem Celular Tumoral , Proliferação de Células , Modelos Animais de Doenças , Fatores de Transcrição , Neoplasias de Mama Triplo Negativas/patologia , Genes myc
14.
Pathol Res Pract ; 245: 154428, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37028109

RESUMO

PURPOSE: To review the latest research of minimal residual disease (MRD) in breast cancer as well as some emerging or potential detection methods for MRD in breast cancer. METHODS: Springer, Wiley, and PubMed databases were searched for the electronic literature with search terms of breast cancer, minimal residual disease, circulating tumor cells (CTCs), circulating tumor DNA (ctDNA), exosomes, etc. RESULTS: Minimal residual disease refers to the occult micrometastasis or minimal residual lesions detected in patients with tumor after radical treatment. An early and dynamic monitoring of breast cancer MRD can contribute to clinical treatment decision-making, improving the diagnosis accuracy and prognosis of breast cancer patients. The updated knowledge regarding MRD in breast cancer diagnosis and prognosis were summarized, followed by the review of several emerging or potential detection technologies for MRD in breast cancer. With the developed new MRD detection technologies referring to CTCs, ctDNA and exosomes, the role of MRD in breast cancer has been growingly verified, which is expected to serve as a new risk stratification factor and prognostic indicator for breast cancer. CONCLUSION: This paper systematically reviews the research progress, opportunities and challenges in MRD in breast cancer in recent years.


Assuntos
Neoplasias da Mama , Feminino , Humanos , Neoplasias da Mama/diagnóstico , Neoplasias da Mama/patologia , DNA de Neoplasias , Neoplasia Residual/diagnóstico , Neoplasia Residual/patologia , Prognóstico
15.
Clin Breast Cancer ; 23(4): 339-349, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36966079

RESUMO

Triple-negative breast cancer is a sub-type of clinically and molecularly heterogeneous malignant disease with a worse prognosis and earlier recurrence than HER2-amplified or hormone-receptor positive breast cancer. Because of the lack of personalized therapy, genetic information is essential to early diagnosing, identifying the high risk of recurrence, guiding therapeutic management, and monitoring treatment efficiency. Circulating tumor DNA (ctDNA) is a novel noninvasive, timely, and tumor specified biomarker that reliably reflects the comprehensive tumor genetic profiles. Thus, it holds significant expectations in personalized therapy, including accurate diagnosis, treatment monitoring, and early detection of recurrence of TNBC. In this review, we summarize the results from recent and ongoing ctDNA-based biomarker-driven clinical trials, with respect to ctDNA analysis' predictive role, in adjuvant, neo-adjuvant, and metastatic settings. Collectively, we anticipate that ctDNA will ultimately be integrated into the management of TNBC to foster precise treatment.


Assuntos
Neoplasias da Mama , DNA Tumoral Circulante , Neoplasias de Mama Triplo Negativas , Humanos , Feminino , DNA Tumoral Circulante/genética , Neoplasias de Mama Triplo Negativas/diagnóstico , Neoplasias de Mama Triplo Negativas/genética , Neoplasias de Mama Triplo Negativas/terapia , Neoplasias da Mama/patologia , Biomarcadores Tumorais/genética , Prognóstico , Recidiva Local de Neoplasia/diagnóstico , Recidiva Local de Neoplasia/genética , Recidiva Local de Neoplasia/patologia
16.
Cell Commun Signal ; 21(1): 28, 2023 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-36721232

RESUMO

The MYC oncogenic family is dysregulated in diverse tumors which is generally linked to the poor prognosis of tumors. The members in MYC family are transcription factors which are responsible for the regulation of various genes expression. Among them, c-MYC is closely related to the progression of tumors. Furthermore, c-MYC aberrations is tightly associated with the prevalence of breast cancer. Tumor microenvironment (TME) is composed of many different types of cellular and non-cellular factors, mainly including cancer-associated fibroblasts, tumor-associated macrophages, vascular endothelial cells, myeloid-derived suppressor cells and immune cells, all of which can affect the diagnosis, prognosis, and therapeutic efficacy of breast cancer. Importantly, the biological processes occurred in TME, such as angiogenesis, immune evasion, invasion, migration, and the recruition of stromal and tumor-infiltrating cells are under the modulation of c-MYC. These findings indicated that c-MYC serves as a critical regulator of TME. Here, we aimed to summarize and review the relevant research, thus to clarify c-MYC is a key mediator between breast cancer cells and TME. Video Abstract.


Assuntos
Neoplasias da Mama , Genes myc , Microambiente Tumoral , Fibroblastos Associados a Câncer , Células Endoteliais , Expressão Gênica , Evasão da Resposta Imune
18.
Chin Med J (Engl) ; 135(20): 2436-2445, 2022 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-36583862

RESUMO

BACKGROUND: Cancer immunotherapy has emerged as a promising strategy against triple-negative breast cancer (TNBC). One of the immunosuppressive pathways involves programmed cell death-1 (PD-1) and programmed cell death ligand-1 (PD-L1), but many patients derived little benefit from PD-1/PD-L1 checkpoint blockades treatment. Prior research has shown that MYC, a master transcription amplifier highly expressed in TNBC cells, can regulate the tumor immune microenvironment and constrain the efficacy of immunotherapy. This study aims to investigate the regulatory relationship between MYC and PD-L1, and whether a cyclin-dependent kinase (CDK) inhibitor that inhibits MYC expression in combination with anti-PD-L1 antibodies can enhance the response to immunotherapy. METHODS: Public databases and TNBC tissue microarrays were used to study the correlation between MYC and PD-L1. The expression of MYC and PD-L1 in TNBCs was examined by quantitative real-time polymerase chain reaction and Western blotting. A patient-derived tumor xenograft (PDTX) model was used to evaluate the influence of a CDK7 inhibitor THZ1 on PD-L1 expression. Cell proliferation and migration were detected by 5-ethynyl-2'-deoxyuridine (EdU) cell proliferation and cell migration assays. Tumor xenograft models were established for in vivo verification. RESULTS: A high MYC expression level was associated with a poor prognosis and could alter the proportion of tumor-infiltrating immune cells (TIICs). The positive correlation between MYC and PD-L1 was confirmed by immunostaining samples from 165 TNBC patients. Suppression of MYC in TNBC caused a reduction in the levels of both PD-L1 messenger RNA and protein. In addition, antitumor immune response was enhanced in the TNBC cancer xenograft mouse model with suppression of MYC by CDK7 inhibitor THZ1. CONCLUSIONS: The combined therapy of CDK7 inhibitor THZ1 and anti-PD-L1 antibody appeared to have a synergistic effect, which might offer new insight for enhancing immunotherapy in TNBC.


Assuntos
Neoplasias de Mama Triplo Negativas , Humanos , Animais , Camundongos , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Neoplasias de Mama Triplo Negativas/genética , Receptor de Morte Celular Programada 1 , Ligantes , Imunoterapia , Antígeno B7-H1/genética , Apoptose , Microambiente Tumoral
19.
Sheng Li Xue Bao ; 74(5): 763-772, 2022 Oct 25.
Artigo em Chinês | MEDLINE | ID: mdl-36319099

RESUMO

The present study was aimed to investigate the effects of circRNA-0028171 on the apoptosis of vascular endothelial cells induced by arsenic trioxide (As2O3). Human umbilical vein endothelial cells (HUVECs) were treated with 0-15 µmol/L As2O3 for 24 h. Then, cellular viability was measured by MTT assay. The expression levels of circRNA-0028171, Bcl-2 and Bax mRNA were detected by real-time quantitative PCR. Bcl-2/Bax protein ratio was detected by Western blot. Whether circRNA-0028171 was involved in the regulation of HUVECs by As2O3 was investigated by transfection with overexpression plasmid of circRNA-0028171 and siRNA. The results showed that compared with the control group, As2O3 group showed decreased cellular viability, reduced Bcl-2/Bax mRNA and protein ratios, and significantly lower expression of circRNA-0028171. Overexpression of circRNA-0028171 inhibited apoptosis of HUVECs induced by As2O3. Knockdown of circRNA-0028171 by siRNA promoted As2O3-induced apoptosis in HUVECs. These results suggest that circRNA-0028171 is involved in the vascular endothelial cell apoptosis induced by As2O3.


Assuntos
Apoptose , RNA Circular , Humanos , Trióxido de Arsênio/metabolismo , Trióxido de Arsênio/farmacologia , Proteína X Associada a bcl-2/metabolismo , RNA Interferente Pequeno/metabolismo , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Células Endoteliais da Veia Umbilical Humana/metabolismo , RNA Mensageiro/metabolismo
20.
Acta Pharm Sin B ; 12(11): 4224-4234, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36386466

RESUMO

Near-infrared (NIR)-light-triggered nanomedicine, including photodynamic therapy (PDT) and photothermal therapy (PTT), is growing an attractive approach for cancer therapy due to its high spatiotemporal controllability and minimal invasion, but the tumor eradication is limited by the intrinsic anti-stress response of tumor cells. Herein, we fabricate a tumor-microenvironment responsive CRISPR nanoplatform based on oxygen-deficient titania (TiO2-x ) for mild NIR-phototherapy. In tumor microenvironment, the overexpressed hyaluronidase (HAase) and glutathione (GSH) can readily destroy hyaluronic acid (HA) and disulfide bond and releases the Cas9/sgRNA from TiO2-x to target the stress alleviating regulators, i.e., nuclear factor E2-related factor 2 (NRF2) and heat shock protein 90α (HSP90α), thereby reducing the stress tolerance of tumor cells. Under subsequent NIR light illumination, the TiO2-x demonstrates a higher anticancer effect both in vitro and in vivo. This strategy not only provides a promising modality to kills cancer cells in a minimal side-effects manner by interrupting anti-stress pathways but also proposes a general approach to achieve controllable gene editing in tumor region without unwanted genetic mutation in normal environments.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA