Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Opt Express ; 29(24): 39376-39383, 2021 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-34809303

RESUMO

A dual-wavelength quantum cascade laser (QCL) with two shallow-etched distributed Bragg reflectors is designed and fabricated. Based on a heterogeneous active region within a single waveguide, single-mode emission at 7.6µm and 8.2µm was achieved. The two wavelengths can be independently controlled by selective current injection on different regions of the device, which are electrically isolated. High optical powers of about 275mW and 218mW at room temperature were obtained for the single-mode emission at 7.6µm and 8.2µm, respectively. The presented design concept for high power, dual-wavelength switchable, mid-infrared QCLs is significant in developing miniaturized multi-species gas detection systems.

2.
Opt Express ; 28(24): 36497-36504, 2020 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-33379742

RESUMO

We report an ultralow power consumption of a quantum cascade laser (QCL) emitting at λ ∼ 4.6 µm operating in continuous-wave mode at room temperature. The ultralow power consumption is achieved by using a high gain active region and shortening the device size. For the device with a 0.5-mm-long cavity and 3.2-µm-wide ridge, the threshold power consumption is as low as 0.26 W with an optical output power of 12.6 mW at 10 °C in continuous-wave mode, which represents the world's most advanced level. Furthermore, the threshold power consumption varies linearly with the operating temperature, where the linear change rate of 2.3 mW/K from 10 to 40 °C is low. As a result, the devices also show low threshold power consumption values of 0.33 W even at 40 °C in continuous-wave mode with an optical output power of 6.1 mW. In addition, the lasers can maintain a single-mode operation due to the short cavity length even if no distributed feedback grating is applied.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA