Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Colloid Interface Sci ; 676: 272-282, 2024 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-39029253

RESUMO

Element doping has been demonstrated as a useful strategy to regulate the band gap and electronic structure of photocatalyst for improving photocatalytic activity. Herein, ZnIn2S4 (ZIS) nanosheets were doped with alkali metal ions (Li+, Na+ or K+) by a simple solution method. Experimental characterizations reveal that alkali metal ions doping reduce the band gap, raise the conduction band position, and improve surface hydrophilicity of ZIS. In addition, theoretical calculations show that Na doping increases the electron density at valence band maximum and surrounding S atom, which is conducive to produce more electrons and effective utilization of electrons, respectively. Benefited from above factors, Na-doped ZIS (Na-ZIS) shows the highest photocatalytic hydrogen evolution performance. Furthermore, CoSe2 cocatalyst is loaded on the surface of Na-ZIS (CS/Na-ZIS), which further improve the charge separation and prolong the lifetime of charges. As a result, the optimized CS/Na-ZIS shows a H2 evolution rate of 4525 µmol·g-1·h-1 with an apparent quantum efficiency of 27.5 % at 420 nm, which are much higher than that of pure ZIS. This study provides an in-depth understanding of the synergistic effect of Na doping and CoSe2 cocatalyst in ameliorating photocatalytic activity.

2.
Chemistry ; : e202402031, 2024 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-39039574

RESUMO

Amorphous photocatalysts are characterized by numerous grain boundaries and abundant unsaturated sites, which enhance reaction efficiency from both kinetic and thermodynamic perspectives. However, amorphization strategies have rarely been used for photocatalytic CO2 reduction. Doping copper onto a metal-organic framework (MOF) surface can regulate the electronic structure of photocatalysts, promote electron transfer from the MOF to Cu, and improve the separation efficiency of electron-hole pairs. In this study, an amorphous photocatalyst MOFw-p/Cu containing highly dispersed Cu (0, I, II) sites was designed and synthesized by introducing a regulator and in situ copper species during the nucleation process of MOF (UiO-66-NH2). Various characterizations confirmed that the Cu species were anchored to the organometallic skeleton of the surface amorphization MOF structure. The synergistic effect of Cu doping and surface amorphization in MOFw-p/Cu can significantly enhance the CO and CH4 yields while promoting the formation of the multicarbon product C2H4. The approach holds promise for developing novel, highly efficient MOFs as photocatalysts for CO2 photoreduction, enabling the production of high-value-added C2 products.

3.
Small ; : e2405153, 2024 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-39039979

RESUMO

Developing efficient photocatalysts for two-electron water splitting with simultaneous H2O2 and H2 generation shows great promise for practical application. Currently, the efficiency of two-electron water splitting is still restricted by the low utilization of photogenerated charges, especially holes, of which the transfer rate is much slower than that of electrons. Herein, Ru single atoms and RuOx clusters are co-decorated on ZnIn2S4 (RuOx/Ru-ZIS) to employ as multifunctional sites for efficient photocatalytic pure water splitting. Doping of Ru single atoms in the ZIS basal plane enhances holes abstraction from bulk ZIS by regulating the electronic structure, and RuOx clusters offer a strong interfacial electric field to remarkably promote the out-of-plane migration of holes from ZIS. Moreover, Ru single atoms and RuOx clusters also serve as active sites for boosting surface water oxidation. As a result, an excellent H2 and H2O2 evolution rates of 581.9 µmol g-1 h-1 and 464.4 µmol g-1 h-1 is achieved over RuOx/Ru-ZIS under visible light irradiation, respectively, with an apparent quantum efficiency (AQE) of 4.36% at 400 nm. This work paves a new way to increase charge utilization by manipulating photocatalyst using single atom and clusters.

4.
J Colloid Interface Sci ; 650(Pt B): 1974-1982, 2023 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-37527602

RESUMO

Integration of photothermal materials and photocatalysts can effectively improve photocatalytic hydrogen production. However, the synergistic mechanism of photothermal effect and heterojunction still need to be deeply investigated. Herein, Co3O4@ZnIn2S4 (ZIS) core-shell heterojunction was constructed as a photothermal/ photocatalytic integrated system for photocatalytic hydrogen production. The photothermal effect induced by Co3O4 boosts the surface reaction kinetic of hydrogen evolution with an apparent activation energy decrease from 42.0 kJ⋅mol-1 to 33.5 kJ⋅mol-1. The photothermal effect also increases the charge concentrations of Co3O4@ZIS, which ameliorates the conductivity of Co3O4@ZIS and thus benefits to charge transfer. In addition, a p-n junction forms between Co3O4 and ZIS and provides a built-in electric field to enhance charge separate and prolong charge life time. Benefiting from the synergy of photothermal effect and heterojunction, the photocatalytic performance of Co3O4@ZIS is significantly improved with a highest hydrogen evolution rate of 4515 µmol⋅g-1⋅h-1, which is about 3.5 times higher than that of pure ZIS. This work offers a full perspective to understand the photothermal/photocatalytic integrated conception for solar hydrogen production.

5.
Small ; 17(17): e2006952, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33705594

RESUMO

Spatially separated loading of reductive and oxidative cocatalysts is a useful strategy for expediting charge separation and surface reaction kinetics, which are two key factors for determining the photocatalytic efficiency. However, loading the spatial separation of dual cocatalysts on a 2D photocatalyst is still a great challenge. Herein, decorating the spatial separation of oxidative and reductive cocatalysts on ZnIn2 S4 nanosheets is realized by designing a ternary Co9 S8 @ZnIn2 S4 @PdS (CS@ZIS@PS) hollow tubular core-shell structure. Particularly, Co9 S8 and PdS functionally serve as the reduction and oxidation cocatalysts, respectively. Experimental results confirm that the spatial separation of Co9 S8 and PdS cocatalysts not only efficiently improve charge separation and accelerate surface reduction-oxidation kinetics, but also generate a photothermal effect to further enhance charge transfer and surface reaction kinetics. As a result, the optimized CS@ZIS@PS yields a remarkable H2 evolution rate of 11407 µmol g-1 h-1 , and the apparent quantum efficiency reaches 71.2% at 420 nm, which is one of the highest values among ZnIn2 S4 so far. The synergistic effect of spatially separated dual cocatalysts and photothermal effect may be applied to other 2D materials for efficient solar energy conversion.

6.
Dalton Trans ; 47(19): 6800-6807, 2018 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-29722778

RESUMO

A zero-dimensional (0D)/two-dimensional (2D) heterojunction has an excellent advantage of boosting the photo-generated carrier separation and obtaining enhanced photocatalytic activities. Here, a ZnIn2S4 nanoparticle/MoS2-RGO nanosheet 0D/2D heterojunction was prepared by a rapid and low temperature hydrothermal method. TEM characterization results reveal that ZnIn2S4 nanoparticles are uniformly dispersed on the surface of MoS2-RGO nanosheets, which can provide abundant active sites and shorten the charge-migration distance, while the MoS2-RGO nanosheet acts as a support to avoid the aggregation of 0D ZnIn2S4 nanoparticles and also serves as a low-cost cocatalyst for effective hydrogen evolution. Through optimizing the MoS2-RGO composition and content, the highest hydrogen evolution rate of 425.1 µmol g-1 h-1 was obtained over the ZnIn2S4/MoS2-RGO 0D/2D heterojunction photocatalyst under visible light irradiation (λ > 420 nm), which is about 34.6 times higher than that of pure ZnIn2S4. Efficient charge separation can be attributed to the significantly enhanced photocatalytic performance, which originates from the favorable properties of the ZnIn2S4/MoS2-RGO 0D/2D heterojunction. This study provides an effective method to improve the photocatalytic performance of the ZnIn2S4 photocatalyst based on the 0D/2D heterojunction.

7.
Nanoscale Res Lett ; 13(1): 33, 2018 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-29396656

RESUMO

An economic and effective Pt-based alloy cocatalyst has attracted considerable attention due to their excellent catalytic activity and reducing Pt usage. In this study, PtNi alloy cocatalyst was successfully decorated on the g-C3N4/GO hybrid photocatalyst via a facile chemical reduction method. The Eosin Y-sensitized g-C3N4/PtNi/GO-0.5% composite photocatalyst yields about 1.54 and 1178 times higher hydrogen evolution rate than the Eosin Y-sensitized g-C3N4/Pt/GO-0.5% and g-C3N4/Ni/GO-0.5% samples, respectively. Mechanism of enhanced performance for the g-C3N4/PtNi/GO composite was also investigated by different characterization, such as photoluminescence, transient photocurrent response, and TEM. These results indicated that enhanced charge separation efficiency and more reactive sites are responsible for the improved hydrogen evolution performance due to the positive synergetic effect between Pt and Ni. This study suggests that PtNi alloy can be used as an economic and effective cocatalyst for hydrogen evolution reaction. Graphical abstract A significant enhancement of photocatalytic H2 evolution is realized over the Eosin Y-sensitized g-C3N4/PtNi/GO composite with PtNi alloy as an efficient cocatalyst.

8.
ChemSusChem ; 9(9): 1003-9, 2016 05 10.
Artigo em Inglês | MEDLINE | ID: mdl-27062042

RESUMO

Exploiting photocatalysts respond to visible light is of huge challenge for photocatalytic H2 production. Here, we synthesize a new composite material consisting of few-layer MoS2 nanosheets grown on CuInS2 surface as an efficient photocatalyst for solar H2 generation. The photocatalytic results demonstrate that the 3 wt % MoS2 /CuInS2 photocatalyst exhibits the highest H2 generation rate of 316 µmol h(-1) g(-1) under visible light irradiation, which is almost 28 times higher than that of CuInS2 . Importantly, the MoS2 /CuInS2 photocatalyst shows a much higher photocatalytic activity than that of Pt-loaded CuInS2 photocatalyst. The enhanced photocatalytic activities of MoS2 /CuInS2 photocatalysts can be attributed to the improved charge separation at the interface of MoS2 and CuInS2, which is demonstrated by the significant enhancement of photocurrent responses in MoS2 /CuInS2 photoelectrodes. This work presents a noble-metal-free photocatalyst that responds to visible light for solar H2 generation.


Assuntos
Cobre/química , Dissulfetos/química , Hidrogênio/química , Índio/química , Molibdênio/química , Nanoestruturas/química , Água/química , Catálise , Cobre/efeitos da radiação , Dissulfetos/efeitos da radiação , Índio/efeitos da radiação , Luz , Molibdênio/efeitos da radiação , Nanoestruturas/efeitos da radiação
9.
ACS Appl Mater Interfaces ; 8(8): 5432-8, 2016 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-26863181

RESUMO

Earth-abundant Cu2ZnSnS4 (CZTS) is a promising material for thin film solar cells or solar water splitting cells. Generally, large grain size and vertical penetration are highly desirable microstructures to high-efficiency solar conversion devices. Up to date, some kinds of vacuum methods have been used to prepare large grain-sized CZTS, which are expensive and limit their applications on a large scale. It is still a key challenge to prepare large-grained and vertical-penetration CZTS by a low-cost solution method. In this study, we obtained vertical-penetration CZTS thin film with 1.3 µm grain sizes by a faclie solution method. Different from previous studies, precursor solution was aged in high-humidity air before it was used to prepare CZTS films. The grain size prepared with aging precursor solution was one of the largest among the samples prepared by a solution method after sulfurizing. Moreover, the large-grained CZTS films were used as photocathodes for solar water splitting, which exhibited a much higher photocurrent than those of the samples without aging. To the best of our knowledge, this is the first demonstration to promote grain growth in CZTS by aging precursor solution in high-humidity air. This aging method can offer a reference to prepare other high-performance films.

10.
Sci Rep ; 4: 4045, 2014 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-24509729

RESUMO

We report the utilization of colloidal MoS2 nanoparticles (NPs) for multicomponent photocatalytic water reduction systems in cooperation with a series of cyclometalated Ir(III) sensitizers. The effects of the particle size and particle dispersion of MoS2 NPs catalyst, reaction solvent and the concentration of the components on hydrogen evolution efficiency were investigated. The MoS2 NPs exhibited higher catalytic performance than did other commonly used water reduction catalysts under identical experiment conditions. The introduction of the carboxylate anchoring groups in the iridium complexes allows the species to be favorably chem-adsorbed onto the MoS2 NPs surface to increase the electron transfer, resulting in enhancement of hydrogen evolution relative to the non-attached systems. The highest apparent quantum yield, which was as high as 12.4%, for hydrogen evolution, was obtained (λ = 400 nm).

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA