Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Oncogene ; 36(33): 4682-4691, 2017 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-28394338

RESUMO

High-risk and MYCN-amplified neuroblastomas are among the most aggressive pediatric tumors. Despite intense multimodality therapies, about 50% of these patients succumb to their disease, making the search for effective therapies an absolute priority. Due to the important functions of poly (ADP-ribose) polymerases, PARP inhibitors have entered the clinical settings for cancer treatment and are being exploited in a variety of preclinical studies and clinical trials. PARP inhibitors based combination schemes have also been tested in neuroblastoma preclinical models with encouraging results. However, the expression of PARP enzymes in human neuroblastoma and the biological consequences of their inhibition remained largely unexplored. Here, we show that high PARP1 and PARP2 expression is significantly associated with high-risk neuroblastoma cases and poor survival, highlighting its previously unrecognized prognostic value for human neuroblastoma. In vitro, PARP1 and 2 are abundant in MYCN amplified and MYCN-overexpressing cells. In this context, PARP inhibitors with high 'PARP trapping' potency, such as olaparib or talazoparib, yield DNA damage and cell death preceded by intense signs of replication stress. Notwithstanding the activation of a CHK1-CDC25A replication stress response, PARP-inhibited MYCN amplified and overexpressing cells fail to sustain a prolonged checkpoint and progress through mitosis in the presence of damaged DNA, eventually undergoing mitotic catastrophe. CHK1-targeted inhibition of the replication stress checkpoint exacerbated this phenotype. These data highlight a novel route for cell death induction by PARP inhibitors and support their introduction, together with CHK1 inhibitors, in therapeutic approaches for neuroblastomas with high MYC(N) activity.


Assuntos
Replicação do DNA/efeitos dos fármacos , Mitose/efeitos dos fármacos , Proteína Proto-Oncogênica N-Myc/metabolismo , Neuroblastoma/tratamento farmacológico , Poli(ADP-Ribose) Polimerase-1/metabolismo , Inibidores de Poli(ADP-Ribose) Polimerases/uso terapêutico , Poli(ADP-Ribose) Polimerases/metabolismo , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Quinase 1 do Ponto de Checagem/metabolismo , Criança , Humanos , Estimativa de Kaplan-Meier , Proteína Proto-Oncogênica N-Myc/genética , Poli(ADP-Ribose) Polimerase-1/genética , Inibidores de Poli(ADP-Ribose) Polimerases/administração & dosagem , Poli(ADP-Ribose) Polimerases/genética
2.
Oncogene ; 27(51): 6539-49, 2008 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-18663358

RESUMO

Mitotic spindle assembly is a highly regulated process, crucial to ensure the correct segregation of duplicated chromosomes in daughter cells and to avoid aneuploidy, a common feature of tumors. Among the most important spindle regulators is Aurora-A, a mitotic centrosomal kinase frequently overexpressed in tumors. Here, we investigated the role of Aurora-A in spindle pole organization in human cells. We show that RNA interference-mediated Aurora-A inactivation causes pericentriolar material fragmentation in prometaphase, yielding the formation of spindles with supernumerary poles. This fragmentation does not necessarily involve centrioles and requires microtubules (MTs). Aurora-A-depleted prometaphases mislocalize the MT-stabilizing protein colonic hepatic tumor-overexpressed gene (ch-TOG), which abnormally accumulates at spindle poles, as well as the mitotic centromere-associated kinesin (MCAK), the major functional antagonist of ch-TOG, which delocalizes from poles. ch-TOG is required for extrapole formation in prometaphases lacking Aurora-A, because co-depletion of Aurora-A and ch-TOG mitigates the fragmented pole phenotype. These results indicate a novel function of Aurora-A, the regulation of ch-TOG and MCAK localization, and highlight a common pathway involving the three factors in control of spindle pole integrity.


Assuntos
Proteínas Associadas aos Microtúbulos/fisiologia , Proteínas Serina-Treonina Quinases/fisiologia , Fuso Acromático/metabolismo , Aurora Quinases , Humanos , Cinesinas/metabolismo , Metáfase/efeitos dos fármacos , Proteínas Associadas aos Microtúbulos/antagonistas & inibidores , Mitose/efeitos dos fármacos , Modelos Biológicos , Ligação Proteica , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , RNA Interferente Pequeno/farmacologia , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/fisiologia , Fuso Acromático/efeitos dos fármacos , Fuso Acromático/fisiologia , Distribuição Tecidual , Células Tumorais Cultivadas
3.
Cell ; 104(1): 83-93, 2001 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-11163242

RESUMO

The small GTPase Ran, bound to GTP, is required for the induction of spindle formation by chromosomes in M phase. High concentrations of Ran.GTP are proposed to surround M phase chromatin. We show that the action of Ran.GTP in spindle formation requires TPX2, a microtubule-associated protein previously known to target a motor protein, Xklp2, to microtubules. TPX2 is normally inactivated by binding to the nuclear import factor, importin alpha, and is displaced from importin alpha by the action of Ran.GTP. TPX2 is required for Ran.GTP and chromatin-induced microtubule assembly in M phase extracts and mediates spontaneous microtubule assembly when present in excess over free importin alpha. Thus, components of the nuclear transport machinery serve to regulate spindle formation in M phase.


Assuntos
Proteínas de Ciclo Celular , Proteínas Associadas aos Microtúbulos/metabolismo , Mitose/fisiologia , Proteínas de Neoplasias , Proteínas Nucleares/metabolismo , Fosfoproteínas , Fuso Acromático/metabolismo , Proteínas de Xenopus , Proteína ran de Ligação ao GTP/metabolismo , Animais , Cromatina/metabolismo , Clonagem Molecular , Feminino , GTP Fosfo-Hidrolases/genética , GTP Fosfo-Hidrolases/isolamento & purificação , GTP Fosfo-Hidrolases/metabolismo , Expressão Gênica/fisiologia , Células HeLa , Humanos , Carioferinas , Proteínas Associadas aos Microtúbulos/genética , Proteínas Associadas aos Microtúbulos/isolamento & purificação , Microtúbulos/metabolismo , Oócitos/citologia , Oócitos/metabolismo , Xenopus laevis , Proteína ran de Ligação ao GTP/genética , Proteína ran de Ligação ao GTP/isolamento & purificação
4.
Cell Growth Differ ; 11(8): 455-65, 2000 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-10965850

RESUMO

Ran-binding protein (RanBP) 1 is a major regulator of the Ran GTPase and is encoded by a regulatory target gene of E2F factors. The Ran GTPase network controls several cellular processes, including nucleocytoplasmic transport and cell cycle progression, and has recently also been shown to regulate microtubule nucleation and spindle assembly in Xenopus oocyte extracts. Here we report that RanBP1 protein levels are cell cycle regulated in mammalian cells, increase from S phase to M phase, peak in metaphase, and abruptly decline in late telophase. Overexpression of RanBP1 throughout the cell cycle yields abnormal mitoses characterized by severe defects in spindle polarization. In addition, microinjection of anti-RanBP1 antibody in mitotic cells induces mitotic delay and abnormal nuclear division, reflecting an abnormal stabilization of the mitotic spindle. Thus, regulated RanBP1 activity is required for proper execution of mitosis in somatic cells.


Assuntos
Proteínas Nucleares/fisiologia , Fuso Acromático/ultraestrutura , Proteína ran de Ligação ao GTP/fisiologia , Células 3T3 , Animais , Anticorpos/imunologia , Ciclo Celular , Núcleo Celular/ultraestrutura , Cromatina/ultraestrutura , Técnica Indireta de Fluorescência para Anticorpo , Mamíferos/fisiologia , Camundongos , Microinjeções , Mitose , Proteínas Nucleares/imunologia , Proteínas Nucleares/metabolismo , Fuso Acromático/fisiologia , Proteína ran de Ligação ao GTP/imunologia , Proteína ran de Ligação ao GTP/metabolismo
5.
Nature ; 400(6740): 178-81, 1999 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-10408446

RESUMO

Chromosomes are segregated by two antiparallel arrays of microtubules arranged to form the spindle apparatus. During cell division, the nucleation of cytosolic microtubules is prevented and spindle microtubules nucleate from centrosomes (in mitotic animal cells) or around chromosomes (in plants and some meiotic cells). The molecular mechanism by which chromosomes induce local microtubule nucleation in the absence of centrosomes is unknown, but it can be studied by adding chromatin beads to Xenopus egg extracts. The beads nucleate microtubules that eventually reorganize into a bipolar spindle. RCC1, the guanine-nucleotide-exchange factor for the GTPase protein Ran, is a component of chromatin. Using the chromatin bead assay, we show here that the activity of chromosome-associated RCC1 protein is required for spindle formation. Ran itself, when in the GTP-bound state (Ran-GTP), induces microtubule nucleation and spindle-like structures in M-phase extract. We propose that RCC1 generates a high local concentration of Ran-GTP around chromatin which in turn induces the local nucleation of microtubules.


Assuntos
Proteínas de Ciclo Celular , Cromatina/fisiologia , Proteínas de Ligação a DNA/fisiologia , Fatores de Troca do Nucleotídeo Guanina , Guanosina Trifosfato/fisiologia , Mitose/fisiologia , Proteínas Nucleares/fisiologia , Fuso Acromático/fisiologia , Animais , Extratos Celulares , Guanosina Trifosfato/metabolismo , Humanos , Técnicas In Vitro , Microtúbulos/fisiologia , Modelos Biológicos , Mutação , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Proteínas Recombinantes , Schizosaccharomyces , Transdução de Sinais , Proteínas de Xenopus , Xenopus laevis , Proteína ran de Ligação ao GTP
6.
J Biol Chem ; 274(15): 10339-48, 1999 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-10187822

RESUMO

The gene encoding Ran-binding protein 1 (RanBP1) is transcribed in a cell cycle-dependent manner. The RanBP1 promoter contains two binding sites for E2F factors, named E2F-c, located proximal to the transcription start, and E2F-b, falling in a more distal promoter region. We have now induced site-directed mutagenesis in both sites. We have found that the distal E2F-b site, together with a neighboring Sp1 element, actively controls up-regulation of transcription in S phase. The proximal E2F-c site plays no apparent role in cycling cells yet is required for transcriptional repression upon growth arrest. Protein binding studies suggest that each E2F site mediates specific interactions with individual E2F family members. In addition, transient expression assays with mutagenized promoter constructs indicate that the functional role of each site is also dependent on its position relative to other regulatory elements in the promoter context. Thus, the two E2F sites play opposite genetic functions and control RanBP1 transcription through distinct molecular mechanisms.


Assuntos
Proteínas de Transporte , Proteínas de Ciclo Celular/metabolismo , Proteínas de Ligação a DNA/metabolismo , Proteínas Fúngicas/genética , Proteínas de Ligação ao GTP/genética , Zíper de Leucina , Proteínas Nucleares/genética , Fatores de Transcrição/metabolismo , Transcrição Gênica , Proteína ran de Ligação ao GTP , Células 3T3 , Animais , Fatores de Transcrição E2F , Proteínas Fúngicas/fisiologia , Fase G1 , Proteínas de Ligação ao GTP/fisiologia , Camundongos , Mutagênese Sítio-Dirigida , Proteínas Nucleares/fisiologia , Regiões Promotoras Genéticas , Proteína 1 de Ligação ao Retinoblastoma , Fase S , Relação Estrutura-Atividade , Fator de Transcrição DP1
7.
J Biol Chem ; 273(1): 495-505, 1998 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-9417108

RESUMO

The murine Htf9-a/RanBP1 and Htf9-c genes are divergently transcribed from a shared TATA-less promoter. Transcription of both genes is initiated on complementary DNA strands and is controlled by cell cycle-dependent mechanisms. The bidirectional promoter harbors a genomic footprint flanking the major transcription start site of both genes. Transient promoter assays showed that the footprinted element is important for transcription of both genes. Protein-binding experiments and antibody assays indicated that members of the retinoid X receptor family interact with the double-stranded site. In addition, distinct factors interact with single DNA strands of the element. Double-stranded binding factors were highly expressed in liver cells, in which neither gene is transcribed, while single-stranded binding proteins were abundant in cycling cells, in which transcription of both genes is efficient. In vivo S1 analysis of the promoter depicted an S1-sensitive organization in cells in which transcription of both genes is active; S1 sensitivity was not detected in conditions of transcriptional repression. Thus, the same element is a target for either retinoid X receptor factors, or for single-stranded binding proteins, and form distinct complexes in different cellular conditions depending on the DNA conformation in the binding site.


Assuntos
DNA de Cadeia Simples/metabolismo , Proteínas de Ligação a DNA/metabolismo , Proteínas de Ligação ao GTP/genética , Proteínas Nucleares/genética , Regiões Promotoras Genéticas , Proteínas/genética , Ativação Transcricional , Proteína ran de Ligação ao GTP , Células 3T3 , Animais , Sequência de Bases , Sítios de Ligação , Extratos Celulares , Pegada de DNA , Proteínas de Ligação a DNA/genética , Fibroblastos/metabolismo , Fígado/metabolismo , Camundongos , Dados de Sequência Molecular , Mutação , Proteínas de Ligação a RNA , Receptores do Ácido Retinoico/genética , Receptores do Ácido Retinoico/metabolismo , Receptores X de Retinoides , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
8.
J Cell Sci ; 110 ( Pt 19): 2345-57, 1997 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-9410874

RESUMO

RanBP1 is a molecular partner of the Ran GTPase, which is implicated in the control of several processes, including DNA replication, mitotic entry and exit, cell cycle progression, nuclear structure, protein import and RNA export. While most genes encoding Ran-interacting partners are constitutively active, transcription of the RanBP1 mRNA is repressed in non proliferating cells, is activated at the G1/S transition in cycling cells and peaks during S phase. We report here that forced expression of the RanBP1 gene disrupts the orderly execution of the cell division cycle at several stages, causing inhibition of DNA replication, defective mitotic exit and failure of chromatin decondensation during the telophase-to-interphase transition in cells that achieve nuclear duplication and chromosome segregation. These results suggest that deregulated RanBP1 activity interferes with the Ran GTPase cycle and prevents the functioning of the Ran signalling system during the cell cycle.


Assuntos
Ciclo Celular/genética , Proteínas de Ligação ao GTP/genética , Regulação da Expressão Gênica , Proteínas Nucleares/genética , Proteína ran de Ligação ao GTP , Células 3T3 , Animais , Ciclo Celular/efeitos dos fármacos , Núcleo Celular/efeitos dos fármacos , Núcleo Celular/genética , Meios de Cultura Livres de Soro/farmacologia , Proteínas de Ligação ao GTP/biossíntese , Regulação da Expressão Gênica/efeitos dos fármacos , Camundongos , Mitose/genética , Proteínas Nucleares/biossíntese , Fase S/genética
9.
Biochem J ; 325 ( Pt 1): 277-86, 1997 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-9224656

RESUMO

The murine Htf9-a/RanBP1 and Htf9-c genes are divergently transcribed from a bidirectional promoter. The Htf9-a gene encodes the RanBP1 protein, a major partner of the Ran GTPase. The divergently transcribed Htf9-c gene encodes a protein sharing similarity with yeast and bacterial nucleic acid-modifying enzymes. We report here that both mRNA species produced by the Htf9-associated genes are regulated during the cell cycle progression, peak in S phase and decrease during mitosis. Transient expression experiments with reporter constructs showed that cell cycle expression is controlled at the transcriptional level, because the bidirectional Htf9 promoter is down-regulated in growth-arrested cells, is activated at the G1/S transition and reaches maximal activity in S phase, though with a different efficiency for each orientation. We have delimited specific promoter regions controlling S phase activity in one or both orientations: identified elements contain recognition sites for members belonging to both the E2F and Sp1 families of transcription factors. Together, the results suggest that the sharing of the regulatory region supports co-regulation of the Htf9-a/RanBP1 and Htf9-c genes in a common window of the cell cycle.


Assuntos
Ciclo Celular/fisiologia , Proteínas de Ligação ao GTP/biossíntese , Proteínas de Ligação ao GTP/genética , Proteínas Nucleares/biossíntese , Proteínas Nucleares/genética , Regiões Promotoras Genéticas , Biossíntese de Proteínas , Proteínas/genética , Transcrição Gênica , Proteína ran de Ligação ao GTP , Células 3T3 , Sequência de Aminoácidos , Animais , Caseína Quinase II , Ciclo Celular/efeitos dos fármacos , Proteínas de Ligação ao GTP/química , Regulação da Expressão Gênica , Hidroxiureia/farmacologia , Zíper de Leucina , Camundongos , Dados de Sequência Molecular , Nocodazol/farmacologia , Proteínas Nucleares/química , Fosforilação , Proteína Quinase C/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas/química , Proteínas de Ligação a RNA , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos , Transcrição Gênica/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA