Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Mais filtros








Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 120(14): e2205768119, 2023 04 04.
Artigo em Inglês | MEDLINE | ID: mdl-36972434

RESUMO

The resilience and sustainability of food systems depend on crop diversity. It is used by breeders to produce new and better varieties, and by farmers to respond to new challenges or demands and to spread risk. However, crop diversity can only be used if it has been conserved, can be identified as the solution for a given problem, and is available. As the ways in which crop diversity is used in research and breeding change and expand, the global conservation system for crop diversity must keep pace; it must provide not only the biological materials themselves, but also the relevant information presented in a comprehensive and coherent way-all while ensuring equitable access and benefit sharing. Here we explore the evolving priorities for global efforts to safeguard and make available the diversity of the world's crops through ex situ genetic resource collections. We suggest that collections held by academic institutions and other holders that are not standard gene banks should be better integrated in global efforts and decision-making to conserve genetic resources. We conclude with key actions that we suggest should be taken to ensure that crop diversity collections of all types are able to fulfill their role to foster more diverse, equitable, resilient, and sustainable food systems globally.


Assuntos
Conservação dos Recursos Naturais , Melhoramento Vegetal , Produtos Agrícolas/genética , Responsabilidade Social
2.
Plants (Basel) ; 11(14)2022 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-35890473

RESUMO

The Adapting Agriculture to Climate Change Project set out to improve the diversity, quantity, and accessibility of germplasm collections of crop wild relatives (CWR). Between 2013 and 2018, partners in 25 countries, heirs to the globetrotting legacy of Nikolai Vavilov, undertook seed collecting expeditions targeting CWR of 28 crops of global significance for agriculture. Here, we describe the implementation of the 25 national collecting programs and present the key results. A total of 4587 unique seed samples from at least 355 CWR taxa were collected, conserved ex situ, safety duplicated in national and international genebanks, and made available through the Multilateral System (MLS) of the International Treaty on Plant Genetic Resources for Food and Agriculture (Plant Treaty). Collections of CWR were made for all 28 targeted crops. Potato and eggplant were the most collected genepools, although the greatest number of primary genepool collections were made for rice. Overall, alfalfa, Bambara groundnut, grass pea and wheat were the genepools for which targets were best achieved. Several of the newly collected samples have already been used in pre-breeding programs to adapt crops to future challenges.

3.
Nat Plants ; 8(5): 491-499, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35534721

RESUMO

Crop landraces have unique local agroecological and societal functions and offer important genetic resources for plant breeding. Recognition of the value of landrace diversity and concern about its erosion on farms have led to sustained efforts to establish ex situ collections worldwide. The degree to which these efforts have succeeded in conserving landraces has not been comprehensively assessed. Here we modelled the potential distributions of eco-geographically distinguishable groups of landraces of 25 cereal, pulse and starchy root/tuber/fruit crops within their geographic regions of diversity. We then analysed the extent to which these landrace groups are represented in genebank collections, using geographic and ecological coverage metrics as a proxy for genetic diversity. We find that ex situ conservation of landrace groups is currently moderately comprehensive on average, with substantial variation among crops; a mean of 63% ± 12.6% of distributions is currently represented in genebanks. Breadfruit, bananas and plantains, lentils, common beans, chickpeas, barley and bread wheat landrace groups are among the most fully represented, whereas the largest conservation gaps persist for pearl millet, yams, finger millet, groundnut, potatoes and peas. Geographic regions prioritized for further collection of landrace groups for ex situ conservation include South Asia, the Mediterranean and West Asia, Mesoamerica, sub-Saharan Africa, the Andean mountains of South America and Central to East Asia. With further progress to fill these gaps, a high degree of representation of landrace group diversity in genebanks is feasible globally, thus fulfilling international targets for their ex situ conservation.


Assuntos
Produtos Agrícolas , Melhoramento Vegetal , Produtos Agrícolas/genética , Ásia Oriental , América do Sul , Triticum/genética
4.
New Phytol ; 233(1): 84-118, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34515358

RESUMO

Crop diversity underpins the productivity, resilience and adaptive capacity of agriculture. Loss of this diversity, termed crop genetic erosion, is therefore concerning. While alarms regarding evident declines in crop diversity have been raised for over a century, the magnitude, trajectory, drivers and significance of these losses remain insufficiently understood. We outline the various definitions, measurements, scales and sources of information on crop genetic erosion. We then provide a synthesis of evidence regarding changes in the diversity of traditional crop landraces on farms, modern crop cultivars in agriculture, crop wild relatives in their natural habitats and crop genetic resources held in conservation repositories. This evidence indicates that marked losses, but also maintenance and increases in diversity, have occurred in all these contexts, the extent depending on species, taxonomic and geographic scale, and region, as well as analytical approach. We discuss steps needed to further advance knowledge around the agricultural and societal significance, as well as conservation implications, of crop genetic erosion. Finally, we propose actions to mitigate, stem and reverse further losses of crop diversity.


Assuntos
Conservação dos Recursos Naturais , Produtos Agrícolas , Agricultura , Produtos Agrícolas/genética , Ecossistema
5.
Plants (Basel) ; 10(12)2021 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-34961233

RESUMO

Genebanks were established out of a recognised need not just to provide genetic variation to support breeding objectives but to prevent crop diversity from being lost entirely for future users. Such conservation objectives may have led, over the past few decades, to a gradually diminishing connection between genebanks and current users of diversity. While there continues to be large-scale distribution of germplasm from genebanks to recipients worldwide, relatively little is known or published about the detailed trends in the demand for genebank materials. Meanwhile, the rapid expansion of the applications and uses of modern genomic technologies and approaches is, undoubtedly, having a transformational impact on breeding, research and the demand for certain genetic resources and associated data. These trends will require genebanks to be responsive and to adapt. They also provide important opportunities for genebanks to reorganize and become more efficient individually and as a community. Ultimately, future challenges and opportunities are likely to drive more demand for genetic diversity and provide an important basis for genebanks to gear up.

6.
Plants (Basel) ; 9(10)2020 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-33019539

RESUMO

The international collections of plant genetic resources for food and agriculture (PGRFA) hosted by 11 CGIAR Centers are important components of the United Nations Food and Agriculture Organization's global system of conservation and use of PGRFA. They also play an important supportive role in realizing Target 2.5 of the Sustainable Development Goals. This paper analyzes CGIAR genebanks' trends in acquiring and distributing PGRFA over the last 35 years, with a particular focus on the last decade. The paper highlights a number of factors influencing the Centers' acquisition of new PGRFA to include in the international collections, including increased capacity to analyze gaps in those collections and precisely target new collecting missions, availability of financial resources, and the state of international and national access and benefit-sharing laws and phytosanitary regulations. Factors contributing to Centers' distributions of PGRFA included the extent of accession-level information, users' capacity to identify the materials they want, and policies. The genebanks' rates of both acquisition and distribution increased over the last decade. The paper ends on a cautionary note concerning the potential of unresolved tensions regarding access and benefit sharing and digital genomic sequence information to undermine international cooperation to conserve and use PGRFA.

7.
Commun Biol ; 2: 136, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31044161

RESUMO

The impact of climate change is causing challenges for the agricultural production and food systems. More nutritious and climate resilient crop varieties are required, but lack of available and accessible trait diversity is limiting crop improvement. Crop wild relatives (CWR) are the wild cousins of cultivated crops and a vast resource of genetic diversity for breeding new, higher yielding, climate change tolerant crop varieties, but they are under-conserved (particularly in situ), largely unavailable and therefore underutilized. Here we apply species distribution modelling, climate change projections and geographic analyses to 1261 CWR species from 167 major crop genepools to explore key geographical areas for CWR in situ conservation worldwide. We identify 150 sites where 65.7% of the CWR species identified can be conserved for future use.


Assuntos
Mudança Climática , Conservação dos Recursos Naturais , Produtos Agrícolas , Modelos Teóricos , Dispersão Vegetal , Plantas Comestíveis , Algoritmos , Biodiversidade , Produtos Agrícolas/genética , Abastecimento de Alimentos , Previsões , Variação Genética , Geografia , Melhoramento Vegetal , Especificidade da Espécie
9.
Nat Plants ; 2: 16022, 2016 03 21.
Artigo em Inglês | MEDLINE | ID: mdl-27249561

RESUMO

The wild relatives of domesticated crops possess genetic diversity useful for developing more productive, nutritious and resilient crop varieties. However, their conservation status and availability for utilization are a concern, and have not been quantified globally. Here, we model the global distribution of 1,076 taxa related to 81 crops, using occurrence information collected from biodiversity, herbarium and gene bank databases. We compare the potential geographic and ecological diversity encompassed in these distributions with that currently accessible in gene banks, as a means to estimate the comprehensiveness of the conservation of genetic diversity. Our results indicate that the diversity of crop wild relatives is poorly represented in gene banks. For 313 (29.1% of total) taxa associated with 63 crops, no germplasm accessions exist, and a further 257 (23.9%) are represented by fewer than ten accessions. Over 70% of taxa are identified as high priority for further collecting in order to improve their representation in gene banks, and over 95% are insufficiently represented in regard to the full range of geographic and ecological variation in their native distributions. The most critical collecting gaps occur in the Mediterranean and the Near East, western and southern Europe, Southeast and East Asia, and South America. We conclude that a systematic effort is needed to improve the conservation and availability of crop wild relatives for use in plant breeding.


Assuntos
Conservação dos Recursos Naturais , Produtos Agrícolas/fisiologia , Internacionalidade , Geografia
10.
Proc Natl Acad Sci U S A ; 111(11): 4001-6, 2014 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-24591623

RESUMO

The narrowing of diversity in crop species contributing to the world's food supplies has been considered a potential threat to food security. However, changes in this diversity have not been quantified globally. We assess trends over the past 50 y in the richness, abundance, and composition of crop species in national food supplies worldwide. Over this period, national per capita food supplies expanded in total quantities of food calories, protein, fat, and weight, with increased proportions of those quantities sourcing from energy-dense foods. At the same time the number of measured crop commodities contributing to national food supplies increased, the relative contribution of these commodities within these supplies became more even, and the dominance of the most significant commodities decreased. As a consequence, national food supplies worldwide became more similar in composition, correlated particularly with an increased supply of a number of globally important cereal and oil crops, and a decline of other cereal, oil, and starchy root species. The increase in homogeneity worldwide portends the establishment of a global standard food supply, which is relatively species-rich in regard to measured crops at the national level, but species-poor globally. These changes in food supplies heighten interdependence among countries in regard to availability and access to these food sources and the genetic resources supporting their production, and give further urgency to nutrition development priorities aimed at bolstering food security.


Assuntos
Produtos Agrícolas/história , Dieta/história , Abastecimento de Alimentos/métodos , Produtos Agrícolas/economia , Dieta/tendências , Abastecimento de Alimentos/estatística & dados numéricos , História do Século XX , História do Século XXI , Humanos , Modelos Lineares
12.
PLoS One ; 8(5): e64146, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23671707

RESUMO

Ex-situ conservation of crop diversity is a global concern, and the development of an efficient and sustainable conservation system is a historic priority recognized in international law and policy. We assess the completeness of the safety duplication collection in the Svalbard Global Seed Vault with respect to data on the world's ex-situ collections as reported by the Food and Agriculture Organization of the United Nations. Currently, 774,601 samples are deposited at Svalbard by 53 genebanks. We estimate that more than one third of the globally distinct accessions of 156 crop genera stored in genebanks as orthodox seeds are conserved in the Seed Vault. The numbers of safety duplicates of Triticum (wheat), Sorghum (sorghum), Pennisetum (pearl millet), Eleusine (finger millet), Cicer (chickpea) and Lens (lentil) exceed 50% of the estimated numbers of distinct accessions in global ex-situ collections. The number of accessions conserved globally generally reflects importance for food production, but there are significant gaps in the safety collection at Svalbard in some genera of high importance for food security in tropical countries, such as Amaranthus (amaranth), Chenopodium (quinoa), Eragrostis (teff) and Abelmoschus (okra). In the 29 food-crop genera with the largest number of accessions stored globally, an average of 5.5 out of the ten largest collections is already represented in the Seed Vault collection or is covered by existing deposit agreements. The high coverage of ITPGRFA Annex 1 crops and of those crops for which there is a CGIAR mandate in the current Seed Vault collection indicates that existence of international policies and institutions are important determinants for accessions to be safety duplicated at Svalbard. As a back-up site for the global conservation system, the Seed Vault plays not only a practical but also a symbolic role for enhanced integration and cooperation for conservation of crop diversity.


Assuntos
Biodiversidade , Conservação dos Recursos Naturais/métodos , Produtos Agrícolas/crescimento & desenvolvimento , Sementes , Agricultura/métodos , Agricultura/tendências , Conservação dos Recursos Naturais/tendências , Cooperação Internacional , Reprodutibilidade dos Testes , Svalbard
13.
PLoS One ; 5(10): e13497, 2010 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-20976009

RESUMO

BACKGROUND: The wild relatives of crops represent a major source of valuable traits for crop improvement. These resources are threatened by habitat destruction, land use changes, and other factors, requiring their urgent collection and long-term availability for research and breeding from ex situ collections. We propose a method to identify gaps in ex situ collections (i.e. gap analysis) of crop wild relatives as a means to guide efficient and effective collecting activities. METHODOLOGY/PRINCIPAL FINDINGS: The methodology prioritizes among taxa based on a combination of sampling, geographic, and environmental gaps. We apply the gap analysis methodology to wild taxa of the Phaseolus genepool. Of 85 taxa, 48 (56.5%) are assigned high priority for collecting due to lack of, or under-representation, in genebanks, 17 taxa are given medium priority for collecting, 15 low priority, and 5 species are assessed as adequately represented in ex situ collections. Gap "hotspots", representing priority target areas for collecting, are concentrated in central Mexico, although the narrow endemic nature of a suite of priority species adds a number of specific additional regions to spatial collecting priorities. CONCLUSIONS/SIGNIFICANCE: Results of the gap analysis method mostly align very well with expert opinion of gaps in ex situ collections, with only a few exceptions. A more detailed prioritization of taxa and geographic areas for collection can be achieved by including in the analysis predictive threat factors, such as climate change or habitat destruction, or by adding additional prioritization filters, such as the degree of relatedness to cultivated species (i.e. ease of use in crop breeding). Furthermore, results for multiple crop genepools may be overlaid, which would allow a global analysis of gaps in ex situ collections of the world's plant genetic resources.


Assuntos
Produtos Agrícolas/genética , Pool Gênico , Genes de Plantas , Phaseolus/genética
14.
Rev. biol. trop ; 56(3): 1023-1041, sep. 2008. graf, tab
Artigo em Inglês | LILACS | ID: lil-637844

RESUMO

Plant populations may experience local extinction and at the same time new populations may appear in nearby suitable locations. Species may also colonize the same site on multiple occasions. Here, we examined the impact of local extinction and recolonization on the genetic structure of wild populations of lima beans (Phaseolus lunatus) in the Central valley of Costa Rica. We compared genetic diversity from the samples taken from the populations before and after extinction at 13 locations using microsatellite markers. Locations were classified according to the occurrence of extinction episodes during the previous five years into three groups: 1) populations that experienced extinction for more than one year, and were later recolonized (recolonized), 2) populations that did not experience local extinction (control), and 3) populations that did not experience local extinction during the study, but were cut to experimentally simulate extinction (experimental). Our data did not show a clear tendency in variation in allele frequencies, expected heterozygosity, and effective number of alleles within and between groups of populations. However, we found that the level of genetic differentiation between samples collected at different times at the same location was different in the three groups of populations. Recolonized locations showed the highest level of genetic differentiation (mean Fst= 0.2769), followed by control locations (mean Fst= 0.0576) and experimental locations (mean Fst= 0.0189). Similar findings were observed for Nei’s genetic distance between samples (di,j= 0.1786, 0.0400, and 0.0037, respectively). Our results indicate that genetic change in lima beans depends on the duration and frequency of local extinction episodes. These findings also showed that control populations are not in equilibrium. Implications of these results for the establishment of conservation strategies of genetic resources of lima beans are discussed. Rev. Biol. Trop. 56 (3): 1023-1041. Epub 2008 September 30.


Las poblaciones de plantas pueden experimentar extinción local, y al mismo tiempo, pueden surgir a sus alrededores nuevas poblaciones. Algunas especies pueden colonizar el mismo sitio en múltiples ocasiones. Aquí examinamos el impacto de la extinción local y recolonización en la estructura genética de poblaciones silvestres del frijol lima (Phaseolus lunatus) en el valle Central de Costa Rica. Comparamos la diversidad genética de muestras tomadas en poblaciones, antes y después de la extinción, en 13 sitios, usando marcadores de microsatélite. Según los episodios de extinción durante los cinco años previos, clasificamos los sitios así: 1) poblaciones que han experimentado extinción por más de un año, y después han recolonizado (recolonizado), 2) poblaciones que no han experimentado extinción local (control), y 3) poblaciones que no han experimentado extinción local durante el estudio, pero fueron cortadas experimentalmente, simulando una extinción (experimental). Nuestros datos no mostraron una clara tendencia en la variación de las frecuencias alélicas, heterozigosidad, o número efectivo de alelos en y entre grupos de poblaciones. Los niveles de diferenciación genética entre muestras recolectadas en diferentes momentos en el mismo sitio fueron diferentes en los tres grupos de poblaciones. Los sitios recolonizados mostraron el mayor nivel de diferenciación genética (Fst = 0.2769), seguidos de los sitios control (Fst= 0.0576) y sitios experimentales (Fst= 0.0189). Obtuvimos resultados similares en la distancia genética Neis entre muestras (d i,j = 0.1786, 0.0400, y 0.0037, respectivamente). Los cambios genéticos en los frijoles lima dependen de la duración y frecuencia de los episodios de extinción local. Las poblaciones "control" no están en equilibrio. Las implicaciones de estos resultados para el establecimiento de estrategias de conservación de los recursos genéticos de habas se encuentran en discusión.


Assuntos
Extinção Biológica , Frequência do Gene/genética , Estruturas Genéticas/genética , Variação Genética/genética , Phaseolus/genética , Costa Rica , DNA de Plantas/genética , Repetições de Microssatélites/genética
15.
Rev Biol Trop ; 56(3): 1023-41, 2008 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-19419025

RESUMO

Plant populations may experience local extinction and at the same time new populations may appear in nearby suitable locations. Species may also colonize the same site on multiple occasions. Here, we examined the impact of local extinction and recolonization on the genetic structure of wild populations of lima beans (Phaseolus lunatus) in the Central Valley of Costa Rica. We compared genetic diversity from the samples taken from the populations before and after extinction at 13 locations using microsatellite markers. Locations were classified according to the occurrence of extinction episodes during the previous five years into three groups: 1) populations that experienced extinction for more than one year, and were later recolonized (recolonized), 2) populations that did not experience local extinction (control), and 3) populations that did not experience local extinction during the study, but were cut to experimentally simulate extinction (experimental). Our data did not show a clear tendency in variation in allele frequencies, expected heterozygosity, and effective number of alleles within and between groups of populations. However, we found that the level of genetic differentiation between samples collected at different times at the same location was different in the three groups of populations. Recolonized locations showed the highest level of genetic differentiation (mean F(st) = 0.2769), followed by control locations (mean F(st) = 0.0576) and experimental locations (mean F(st) = 0.0189). Similar findings were observed for Neis genetic distance between samples (d(ij) = 0.1786, 0.0400, and 0.0037, respectively). Our results indicate that genetic change in lima beans depends on the duration and frequency of local extinction episodes. These findings also showed that control populations are not in equilibrium. Implications of these results for the establishment of conservation strategies of genetic resources of lima beans are discussed.


Assuntos
Extinção Biológica , Frequência do Gene/genética , Estruturas Genéticas/genética , Variação Genética/genética , Phaseolus/genética , Costa Rica , DNA de Plantas/genética , Repetições de Microssatélites/genética
16.
Pac Health Dialog ; 14(2): 111-4, 2007 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-19588616

RESUMO

Neglect of traditional food systems has led to serious nutrition and health problems throughout the Pacific Islands. At the same time, there is concern about the loss of traditional knowledge, customs and culture related to local foods, and of biodiversity. However, there is still a great diversity of nutrient-rich local food crops in the Pacific, along with considerable knowledge about these foods, their methods of production, harvesting, storage, and preparation. An integrated approach is needed in order to make a meaningful impact on increased production, marketing/processing and use of local food crops and foods for better health and nutrition, requiring greater collaboration between the health sector and agencies in other sectors. Priorities for action include: documentation and assessment of traditional food systems, including analysis of local foods and crop varieties for their nutrient content; innovative means of increasing awareness of the values of local foods among the general public and policy makers; conservation of rare varieties of crops and food trees and protection of the environment; and an increased focus on small-scale processing and marketing of local foods. Overriding all of this is the urgent need to mainstream consideration of these important issues into relevant national and regional policies. The rubric "Biodiversity for Health and Nutrition" incorporates all of these issues and provides a framework within which all partner agencies can be involved.


Assuntos
Agricultura/métodos , Dieta/etnologia , Dieta/normas , Conhecimentos, Atitudes e Prática em Saúde , Agricultura/normas , Agricultura/tendências , Biodiversidade , Conservação dos Recursos Naturais , Produtos Agrícolas/crescimento & desenvolvimento , Humanos , Nova Zelândia , Valor Nutritivo , Ilhas do Pacífico/etnologia
17.
Methods Enzymol ; 395: 279-98, 2005.
Artigo em Inglês | MEDLINE | ID: mdl-15865973

RESUMO

The genetic structure of an organism is shaped by various factors, many of which vary significantly over space. In this chapter, we provide insight on how studying geographic patterns may contribute to an improved understanding of variability in genetic structure. We first review the theoretical background on how differences in genetic structure may be generated through processes that are inherently variable over space. We then present novices with some basics on how geographic information systems (GIS) may be adopted to study this variation, including advice on software, data, and the type of research questions that might be addressed. The chapter finishes with a brief review of how spatial analysis has contributed to the conservation and use of plant genetic resources, through an understanding of spatial patterns in species distribution and genetic structure. We conclude that spatial variation is a factor often overlooked in genetic studies and one that merits greater consideration. With the advent of functional genomics and improved quantification of adaptive traits, spatial analysis may be key in understanding variation in genetic structure through careful analysis of genotype-environment interactions.


Assuntos
Variação Genética , Geografia/métodos , Plantas/genética , Algoritmos , Evolução Biológica , Conservação dos Recursos Naturais , Ecossistema , Meio Ambiente , Técnicas Genéticas , Genoma de Planta , Geografia/estatística & dados numéricos , Modelos Genéticos , Software
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA