Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Toxics ; 11(3)2023 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-36977004

RESUMO

Nanotechnology-based strategies have played a pivotal role in innovative products in different technological fields, including medicine, agriculture, and engineering. The redesign of the nanometric scale has improved drug targeting and delivery, diagnosis, water treatment, and analytical methods. Although efficiency brings benefits, toxicity in organisms and the environment is a concern, particularly in light of global climate change and plastic disposal in the environment. Therefore, to measure such effects, alternative models enable the assessment of impacts on both functional properties and toxicity. Caenorhabditis elegans is a nematode model that poses valuable advantages such as transparency, sensibility in responding to exogenous compounds, fast response to perturbations besides the possibility to replicate human disease through transgenics. Herein, we discuss the applications of C. elegans to nanomaterial safety and efficacy evaluations from one health perspective. We also highlight the directions for developing appropriate techniques to safely adopt magnetic and organic nanoparticles, and carbon nanosystems. A description was given of the specifics of targeting and treatment, especially for health purposes. Finally, we discuss C. elegans potential for studying the impacts caused by nanopesticides and nanoplastics as emerging contaminants, pointing out gaps in environmental studies related to toxicity, analytical methods, and future directions.

2.
Nanotoxicology ; 16(4): 472-483, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35848961

RESUMO

Magnetic nanoparticles (NPs) are suitable candidates for various medical and biological applications, despite some concerns that they may have negative impacts on human health. In this study, the toxicity effects of magnetic NPs consisting of α"-Fe16N2 captured and bioaccumulated by the nematode Caenorhabditis elegans (C. elegans) in the early larval stage are evaluated. The choice of α"-Fe16N2 NPs is based on their good structural stability when stored in saline solution and high magnetic performance. The uptake and bioaccumulation of α"-Fe16N2 NPs in intestinal cells of C. elegans was evidenced by transmission electron microscopy. After exposure to NPs up to 40 mg mL-1, C. elegans larval development, survival, feeding behavior, defecation cycles, movement and reproduction were monitored. C. elegans survival and other monitored behavioral evolutions do not show significant changes, except for a slight statistical reduction in the reproductive profile. Therefore, the present results are promising and very encouraging for investigations of applications of α"-Fe16N2 NPs in the biomedical area.


Assuntos
Nanopartículas de Magnetita , Nanopartículas , Animais , Caenorhabditis elegans , Humanos , Ferro/toxicidade , Nanopartículas de Magnetita/toxicidade , Nanopartículas/toxicidade , Reprodução , Solução Salina
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA