Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Fluoresc ; 2024 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-39158625

RESUMO

A rhodamine based chemoprobe BESN was engineered and employed as a selective ''OFF-ON'' chromo-fluorogenic sensor for Al3+ in H2O:MeOH (1:9, v:v). Notable changes in the absorption and emission spectra of BESN were clearly detectable upon the addition of Al3+. Sensitivity and binding mechanism studies demonstrated a good sensing performance of BESN with nanomolar detection limit (130 nM), and it was found to be highly selective towards interfering metal ions. Besides, the binding constant between BESN and Al3+ was found to be 3.19 × 103 M-1. Then, the validation study of BESN for Al3+ was performed based on significant analytical parameters and statistical tests. The binding of Al3+ with BESN (1:1) was probed via infrared, high-resolution mass and emission (Job's plot) spectroscopy measurements. The sensing performance of BESN could make it ideal chemosensor for real applications including vegetable, tuna fish and water samples, also for Smartphone and test-kit applications. The recovery values of the BESN to Al3+ were estimated within a range from 95.13% to 105.30% for water, 94.63% to 109.62% for tuna fish and 94.80% to 109.80% for vegetable samples. Additionally, the BESN has very low cytotoxicity and was triumphantly utilized for the recognition of Al3+ in living-cells.

2.
Spectrochim Acta A Mol Biomol Spectrosc ; 294: 122556, 2023 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-36878135

RESUMO

The recognition of toxic Al3+ in foods and biosystems has of great interest to researchers. Herein, a novel cyanobiphenyl-based chemosensor CATH (E)-N'-((4'-cyano-4-hydroxy-[1,1'-biphenyl]-3-yl)methylene)thiophene-2-carbohydrazide was fabricated and shown to recognize Al3+ in HEPES buffer:EtOH (90:10, v:v, pH = 7.4) by ''lighting-up'' fluorescence sensing. The CATH evidenced high sensitivity (LOD = 13.1 nM) and excellent selectivity to Al3+ over competing cations. The Job's plot, TOF-MS and theoretical computation studies were performed to probe the binding mechanism of Al3+ to CATH. Additionally; CATH was successfully utilized to practical applications and employed to recover of Al3+ from different food samples. More importantly, it was employed to intracellular Al3+ detection in living cells including THLE2 and HepG2.


Assuntos
Alumínio , Corantes Fluorescentes , Corantes Fluorescentes/metabolismo , Cátions , Fluorescência , Espectrometria de Fluorescência/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA