Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Mol Ther ; 31(5): 1402-1417, 2023 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-36380587

RESUMO

Extracellular vesicles (EVs) are nanovesicles released by all eukaryotic cells. This work reports the first nanoscale fluorescent visualization of tumor-originating vesicles bearing an angiogenic microRNA (miR)-126 cargo. In a validated experimental model of lethal murine vascular neoplasm, tumor-originating EV delivered its miR-126 cargo to tumor-associated macrophages (TAMs). Such delivery resulted in an angiogenic (LYVE+) change of state in TAM that supported tumor formation. Study of the trafficking of tumor-originating fluorescently tagged EV revealed colocalization with TAM demonstrating uptake by these cells. Ex vivo treatment of macrophages with tumor-derived EVs led to gain of tumorigenicity in these isolated cells. Single-cell RNA sequencing of macrophages revealed that EV-borne miR-126 characterized the angiogenic change of state. Unique gene expression signatures of specific macrophage clusters responsive to miR-126-enriched tumor-derived EVs were revealed. Topical tissue nanotransfection (TNT) delivery of an oligonucleotide comprising an anti-miR against miR-126 resulted in significant knockdown of miR-126 in the tumor tissue. miR-126 knockdown resulted in complete involution of the tumor and improved survival rate of tumor-affected mice. This work identifies a novel tumorigenic mechanism that relies on tumorigenic state change of TAM caused by tumor-originating EV-borne angiomiR. This disease process can be effectively targeted by topical TNT of superficial tumors.


Assuntos
Vesículas Extracelulares , MicroRNAs , Animais , Camundongos , MicroRNAs/genética , MicroRNAs/metabolismo , Macrófagos/metabolismo , Fagocitose , Vesículas Extracelulares/metabolismo
2.
NPJ Regen Med ; 7(1): 63, 2022 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-36266362

RESUMO

This work rests on our non-viral tissue nanotransfection (TNT) platform to deliver MyoD (TNTMyoD) to injured tissue in vivo. TNTMyoD was performed on skin and successfully induced expression of myogenic factors. TNTMyoD was then used as a therapy 7 days following volumetric muscle loss (VML) of rat tibialis anterior and rescued muscle function. TNTMyoD is promising as VML intervention.

3.
J Neuroinflammation ; 14(1): 177, 2017 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-28865458

RESUMO

BACKGROUND: In multiple sclerosis (MS) and experimental autoimmune encephalomyelitis (EAE), inflammation is perpetuated by both infiltrating leukocytes and astrocytes. Recent work implicated SUR1-TRPM4 channels, expressed mostly by astrocytes, in murine EAE. We tested the hypothesis that pharmacological inhibition of SUR1 during the chronic phase of EAE would be beneficial. METHODS: EAE was induced in mice using myelin oligodendrocyte glycoprotein (MOG) 35-55. Glibenclamide (10 µg/day) was administered beginning 12 or 24 days later. The effects of treatment were determined by clinical scoring and tissue examination. Drug within EAE lesions was identified using bodipy-glibenclamide. The role of SUR1-TRPM4 in primary astrocytes was characterized using patch clamp and qPCR. Demyelinating lesions from MS patients were studied by immunolabeling and immunoFRET. RESULTS: Administering glibenclamide beginning 24 days after MOG35-55 immunization, well after clinical symptoms had plateaued, improved clinical scores, reduced myelin loss, inflammation (CD45, CD20, CD3, p65), and reactive astrocytosis, improved macrophage phenotype (CD163), and decreased expression of tumor necrosis factor (TNF), B-cell activating factor (BAFF), chemokine (C-C motif) ligand 2 (CCL2) and nitric oxide synthase 2 (NOS2) in lumbar spinal cord white matter. Glibenclamide accumulated within EAE lesions, and had no effect on leukocyte sequestration. In primary astrocyte cultures, activation by TNF plus IFNγ induced de novo expression of SUR1-TRPM4 channels and upregulated Tnf, Baff, Ccl2, and Nos2 mRNA, with glibenclamide blockade of SUR1-TRPM4 reducing these mRNA increases. In demyelinating lesions from MS patients, astrocytes co-expressed SUR1-TRPM4 and BAFF, CCL2, and NOS2. CONCLUSIONS: SUR1-TRPM4 may be a druggable target for disease modification in MS.


Assuntos
Encefalomielite Autoimune Experimental/tratamento farmacológico , Encefalomielite Autoimune Experimental/metabolismo , Glibureto/administração & dosagem , Esclerose Múltipla/metabolismo , Receptores de Sulfonilureias/biossíntese , Canais de Cátion TRPM/biossíntese , Adulto , Idoso , Animais , Astrócitos/efeitos dos fármacos , Astrócitos/metabolismo , Astrócitos/patologia , Encefalomielite Autoimune Experimental/patologia , Feminino , Glibureto/metabolismo , Humanos , Hipoglicemiantes/administração & dosagem , Hipoglicemiantes/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Pessoa de Meia-Idade , Esclerose Múltipla/patologia , Resultado do Tratamento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA