Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
ACS Nano ; 7(2): 1188-99, 2013 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-23311347

RESUMO

In this work, we report the multifunctional character of neodymium-doped LaF3 core/shell nanoparticles. Because of the spectral overlap of the neodymium emission bands with the transparency windows of human tissues, these nanoparticles emerge as relevant subtissue optical probes. For neodymium contents optimizing the luminescence brightness of Nd³âº:LaF3 nanoparticles, subtissue penetration depths of several millimeters have been demonstrated. At the same time, it has been found that the infrared emission bands of Nd³âº:LaF3 nanoparticles show a remarkable thermal sensitivity, so that they can be advantageously used as luminescent nanothermometers for subtissue thermal sensing. This possibility has been demonstrated in this work: Nd³âº:LaF3 nanoparticles have been used to provide optical control over subtissue temperature in a single-beam plasmonic-mediated heating experiment. In this experiment, gold nanorods are used as nanoheaters while thermal reading is performed by the Nd³âº:LaF3 nanoparticles. The possibility of a real single-beam-controlled subtissue hyperthermia process is, therefore, pointed out.


Assuntos
Fluoretos/química , Lantânio/química , Imagem Molecular/métodos , Nanopartículas/química , Neodímio/química , Temperatura , Coloides , Humanos , Medições Luminescentes
2.
Nanotechnology ; 22(10): 105709, 2011 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-21289403

RESUMO

Cd(1-x)Mn(x)S nanocrystals (NCs) were successfully grown in a glass matrix and investigated by photoluminescence (PL), electron paramagnetic resonance (EPR) and magnetic force microscopy (MFM). We verified that the luminescent properties of these NCs can be controlled both by changing the x concentration and by thermal annealing of the samples. The EPR and PL data showed that the characteristic emission of Mn(2+) ions ((4)T(1)-(6)A(1)) is only observed when this magnetic impurity is substitutionally incorporated in the Cd(1-x)Mn(x)S NC core (site S(I)). Besides, it was observed that the emission ((4)T(1)-(6)A(1)) suppression, caused by the Mn(2+) ion presence near the surface (site S(II)) of the Cd(1-x)Mn(x)S NCs, is independent of the host material. The MFM images also confirmed the high quality of the Cd(1 - x)Mn(x)S NC samples, showing a uniform distribution of total magnetic moments in the nanoparticles.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA