Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
iScience ; 27(2): 108837, 2024 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-38303705

RESUMO

Obstructive sleep apnea (OSA) induces intermittent hypoxia (IH), an independent risk factor for non-alcoholic fatty liver disease (NAFLD). While the molecular links between IH and NAFLD progression are unclear, immune cell-driven inflammation plays a crucial role in NAFLD pathogenesis. Using lean mice exposed to long-term IH and a cohort of lean OSA patients (n = 71), we conducted comprehensive hepatic transcriptomics, lipidomics, and targeted serum proteomics. Significantly, we demonstrated that long-term IH alone can induce NASH molecular signatures found in human steatohepatitis transcriptomic data. Biomarkers (PPARs, NRFs, arachidonic acid, IL16, IL20, IFNB, TNF-α) associated with early hepatic and systemic inflammation were identified. This molecular link between IH, sleep apnea, and steatohepatitis merits further exploration in clinical trials, advocating for integrating sleep apnea diagnosis in liver disease phenotyping. Our unique signatures offer potential diagnostic and treatment response markers, highlighting therapeutic targets in the comorbidity of NAFLD and OSA.

2.
Front Med (Lausanne) ; 9: 829979, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35252260

RESUMO

Sleep Apnea Syndrome (SAS) is one of the most common chronic diseases, affecting nearly one billion people worldwide. The repetitive occurrence of abnormal respiratory events generates cyclical desaturation-reoxygenation sequences known as intermittent hypoxia (IH). Among SAS metabolic sequelae, it has been established by experimental and clinical studies that SAS is an independent risk factor for the development and progression of non-alcoholic fatty liver disease (NAFLD). The principal goal of this study was to decrypt the molecular mechanisms at the onset of IH-mediated liver injury. To address this question, we used a unique mouse model of SAS exposed to IH, employed unbiased high-throughput transcriptomics and computed network analysis. This led us to examine hepatic mitochondrial ultrastructure and function using electron microscopy, high-resolution respirometry and flux analysis in isolated mitochondria. Transcriptomics and network analysis revealed that IH reprograms Nuclear Respiratory Factor- (NRF-) dependent gene expression and showed that mitochondria play a central role. We thus demonstrated that IH boosts the oxidative capacity from fatty acids of liver mitochondria. Lastly, the unbalance between oxidative stress and antioxidant defense is tied to an increase in hepatic ROS production and DNA damage during IH. We provide a comprehensive analysis of liver metabolism during IH and reveal the key role of the mitochondria at the origin of development of liver disease. These findings contribute to the understanding of the mechanisms underlying NAFLD development and progression during SAS and provide a rationale for novel therapeutic targets and biomarker discovery.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA