Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Tipo de estudo
Intervalo de ano de publicação
1.
Appl Environ Microbiol ; : e0115824, 2024 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-39387558

RESUMO

The aim of this study was to evaluate whether community-level monitoring of respiratory and enteric viruses in wastewater can provide a comprehensive picture of local virus circulation. Wastewater samples were collected weekly at the wastewater treatment plant (WWTP) inlet and at the outlet of a nearby nursing home (NH) in Burgundy, France, during the winter period of 2022/2023. We searched for the pepper mild mottle virus as an indicator of fecal content as well as for the main respiratory viruses [severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), influenza, and respiratory syncytial virus] and enteric viruses (rotavirus, sapovirus, norovirus, astrovirus, and adenovirus). Samples were analyzed using real-time reverse transcription PCR-based methods. SARS-CoV-2 was the most frequently detected respiratory virus, with 66.7% of positive samples from the WWTP and 28.6% from the NH. Peaks of SARS-CoV-2 were consistent with the chronological incidence of infections recorded in the sentinel surveillance and the nearby hospital databases. The number of positive samples was lower in the NH than in WWTP for the three respiratory viruses. Enteric viruses were frequently detected, most often sapovirus and norovirus genogroup II, accounting both for 77.8% of positive samples in the WWTP and 57.1% and 37%, respectively, in the NH. The large circulation of sapovirus was unexpected in particular in the NH. Combined wastewater surveillance using simple optimized methods can be a valuable tool for monitoring viral circulation and may serve as a suitable early warning system for identifying both local outbreaks and the onset of epidemics. These results encourage the application of wastewater-based surveillance (WBS) to SARS-CoV2, norovirus, and sapovirus.IMPORTANCEWBS provides valuable information on the spread of epidemic viruses in the environment using appropriate and sensitive detection methods. By monitoring the circulation of viruses using reverse transcription PCR methods in wastewater from the inlet of a wastewater treatment plant and the outlet of a nearby retirement home (connected to the same collective sewer network), we aimed to demonstrate that implementing combined WBS at key community sites allows effective detection of the occurrence of respiratory (influenza, respiratory syncytial virus, and SARS-CoV-2) and enteric (norovirus, rotavirus, and sapovirus) virus infections within a given population. This analysis on a localized scale provided new information on the viral circulation in the two different sites. Implementing WBS to monitor the circulation or the emergence of infectious diseases is an important means of alerting the authorities and improving public health management. WBS could participate actively to the health of humans, animals, and the environment.

2.
Viruses ; 11(6)2019 06 05.
Artigo em Inglês | MEDLINE | ID: mdl-31195597

RESUMO

Influenza D virus (IDV) has first been identified in 2011 in the USA and was shown to mainly circulate in cattle. While IDV is associated with mild respiratory signs, its prevalence is still unknown. In the present study we show that IDV has been circulating throughout France in cattle and small ruminants, with 47.2% and 1.5% seropositivity, respectively. The high prevalence and moderate pathogenicity of IDV in cattle suggest that it may play an initiating role in the bovine respiratory disease complex.


Assuntos
Doenças dos Bovinos/virologia , Infecções por Orthomyxoviridae/veterinária , Thogotovirus/imunologia , Animais , Anticorpos Antivirais/imunologia , Bovinos , Doenças dos Bovinos/epidemiologia , França , Infecções por Orthomyxoviridae/epidemiologia , Infecções Respiratórias/epidemiologia , Infecções Respiratórias/veterinária , Infecções Respiratórias/virologia , Ruminantes , Estudos Soroepidemiológicos
3.
Front Microbiol ; 3: 83, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22408639

RESUMO

CTX-M [a major type of extended-spectrum beta-lactamase (ESBL)] producing Escherichia coli are increasingly involved in human infections worldwide. The aim of this study was to investigate potential reservoirs for such strains: soils, cattle, and farm environment. The prevalence of bla(CTX-M) genes was determined directly from soil DNA extracts obtained from 120 sites in Burgundy (France) using real-time PCR. bla(CTX-M) targets were found in 20% of the DNA extracts tested. Samples of cattle feces (n = 271) were collected from 182 farms in Burgundy. Thirteen ESBL-producing isolates were obtained from 12 farms and further characterized for the presence of bla genes. Of the 13 strains, five and eight strains carried bla(TEM-71) genes and bla(CTX-M-1) genes respectively. Ten strains of CTX-M-1 producing E. coli were isolated from cultivated and pasture soils as well as from composted manure within two of these farms. The genotypic analysis revealed that environmental and animal strains were clonally related. Our study confirms the occurrence of CTX-M producing E. coli in cattle and reports for the first time the occurrence of such strains in cultivated soils. The environmental competence of such strains has to be determined and might explain their long term survival since CTX-M isolates were recovered from a soil that was last amended with manure 1 year before sampling.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA