Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Cell Biochem Funct ; 32(5): 438-44, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24633892

RESUMO

The mechanisms that lead to the onset of organoselenium intoxication are still poorly understood. Therefore, in the present study, we investigated the effect of acute administration of 3-methyl-1-phenyl-2-(phenylseleno)oct-2-en-1-one on some parameters of oxidative stress and on the activity of creatine kinase (CK) in different brain areas and on the behaviour in the open field test of 90-day-old male rats. Animals (n = 10/group) were treated intraperitoneally with a single dose of the organoselenium (125, 250 or 500 µg kg(-1) ), and after 1 h of the drug administration, they were exposed to the open field test, and behaviour parameters were recorded. Immediately after they were euthanized, cerebral cortex, hippocampus and cerebellum were dissected for measurement of thiobarbituric acid reactive substances (TBARS), carbonyl, sulfhydryl, catalase (CAT), superoxide dismutase (SOD) and CK activity. Our results showed that the dose of 500 µg kg(-1) of the organoselenium increased the locomotion and rearing behaviours in the open field test. Moreover, the organochalcogen enhanced TBARS in the cerebral cortex and cerebellum and increased the oxidation of proteins (carbonyl) only in the cerebral cortex. Sulfhydryl content was reduced in all brain areas, CAT activity enhanced in the hippocampus and reduced in the cerebellum and SOD activity increased in all brain structures. The organoselenium also inhibited CK activity in the cerebral cortex. Therefore, changes in motor behaviour, redox state and energy homeostasis in rats treated acutely with organoselenium support the hypotheses that the brain is a potential target for the organochalcogen action. Ltd.


Assuntos
Encéfalo/metabolismo , Compostos Organosselênicos/toxicidade , Estresse Oxidativo/efeitos dos fármacos , Animais , Encéfalo/enzimologia , Catalase/metabolismo , Creatina Quinase/metabolismo , Masculino , Compostos Organosselênicos/química , Ratos , Ratos Wistar , Superóxido Dismutase/metabolismo
2.
Neurochem Res ; 37(5): 928-34, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-22212881

RESUMO

Selenium (Se) is an essential mineral for mammals. It is a nutrient related to the complex metabolic and enzymatic functions. Although Se has important physiological functions in the cells, organic compounds of Se can be extremely toxic, and may affect the central nervous system. This study aims to investigate the effect of the chronic treatment with the vinyl chalcogenide 3-methyl-1-phenyl-2-(phenylseleno)oct-2-en-1-one on some parameters of oxidative stress in the brain of rats. Animals received the vinyl chalcogenide (125, 250 or 500 µg/kg body weight) intraperitoneally once a day during 30 days. The cerebral cortex, the hippocampus, and the cerebellum were dissected and homogenized in KCl. Afterward, thiobarbituric acid reactive substances (TBARS), carbonyl, sulfhydryl, catalase (CAT), superoxide dismutase (SOD) and glutathione peroxidase (GPx) activities were measured in the brain. Results showed that the organoselenium enhanced TBARS in the cerebral cortex of rats but the compound was not able to change carbonyl levels. Furthermore, the organoselenium reduced thiol groups measured by the sulfhydryl assay in all tissues studied. The activity of the antioxidant enzyme CAT was increased by the organochalcogen in the cerebral cortex and in the cerebellum, and the activity of SOD was increased in the hippocampus. On the other hand, the activity of the antioxidant enzyme GPx was reduced in all brain structures. Our findings indicate that this organoselenium compound induces oxidative stress in different brain regions of rats, corroborating to the fact that this tissue is a potential target for organochalcogen action.


Assuntos
Encéfalo/efeitos dos fármacos , Compostos Organosselênicos/farmacologia , Estresse Oxidativo/efeitos dos fármacos , Animais , Encéfalo/enzimologia , Encéfalo/metabolismo , Catalase/metabolismo , Relação Dose-Resposta a Droga , Glutationa Peroxidase/metabolismo , Masculino , NADP/metabolismo , Compostos Organosselênicos/administração & dosagem , Ratos , Ratos Wistar , Superóxido Dismutase/metabolismo , Substâncias Reativas com Ácido Tiobarbitúrico/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA