Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Chem Commun (Camb) ; 59(7): 836-851, 2023 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-36598064

RESUMO

Since the emergence of metal-organic frameworks (MOFs), a myriad of thrilling properties and applications, in a wide range of fields, have been reported for these materials, which mainly arise from their porous nature and rich host-guest chemistry. However, other important features of MOFs that offer great potential rewards have been only barely explored. For instance, despite the fact that MOFs are suitable candidates to be used as chemical nanoreactors for the preparation, stabilization and characterization of unique functional species, that would be hardly accessible outside the functional constrained space offered by MOF channels, only very few examples have been reported so far. In particular, we outline in this feature recent advances in the use of highly robust and crystalline oxamato- and oxamidato-based MOFs as reactors for the in situ preparation of well-defined catalytically active single atom catalysts (SACS), subnanometer metal nanoclusters (SNMCs) and supramolecular coordination complexes (SCCs). The robustness of selected MOFs permits the post-synthetic (PS) in situ preparation of the desired catalytically active metal species, which can be characterised by single-crystal X-ray diffraction (SC-XRD) taking advantage of its high crystallinity. The strategy highlighted here permits the always challenging large-scale preparation of stable and well-defined SACs, SNMCs and SCCs, exhibiting outstanding catalytic activities.

2.
J Am Chem Soc ; 144(34): 15672-15679, 2022 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-35993888

RESUMO

Expanding proton-coupled electron transfer to multiproton translocations (MPCET) provides a bioinspired mechanism to transport protons away from the redox site. This expansion has been accomplished by separating the initial phenolic proton donor from the pyridine-based terminal proton acceptor by a Grotthuss-type proton wire made up of concatenated benzimidazoles that form a hydrogen-bonded network. However, it was found that the midpoint potential of the phenol oxidation that launched the Grotthuss-type proton translocations is a function of the number of benzimidazoles in the hydrogen-bonded network; it becomes less positive (i.e., a weaker oxidant) as the number of bridging benzimidazoles increases. Herein, we report a strategy to maintain the high redox potential necessary for oxidative processes relevant to artificial photosynthesis, e.g., water oxidation and long-range MPCET processes for managing protons. The integrated structural and functional roles of the benzimidazole-based bridge provide sites for substitution of the benzimidazoles with electron-withdrawing groups (e.g., trifluoromethyl groups). Such substitution increases the midpoint potential of the phenoxyl radical/phenol couple so that proton translocations over ∼11 Å become thermodynamically comparable to that of an unsubstituted system where one proton is transferred over ∼2.5 Å. The extended, substituted system maintains the hydrogen-bonded network; infrared spectroelectrochemistry confirms reversible proton translocations from the phenol to the pyridyl terminal proton acceptor upon oxidation and reduction. Theory supports the change in driving force with added electron-withdrawing groups and provides insight into the role of electron density and electrostatic potential in MPCET processes associated with these Grotthuss-type proton translocations.


Assuntos
Fenóis , Prótons , Benzimidazóis/química , Transporte de Elétrons , Hidrogênio/química , Oxirredução , Fenol/química , Fenóis/química
3.
J Phys Chem Lett ; 13(20): 4479-4485, 2022 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-35575065

RESUMO

Photoinduced proton-coupled electron transfer and long-range two-proton transport via a Grotthuss-type mechanism are investigated in a biomimetic construct. The ultrafast, nonequilibrium dynamics are assessed via two-dimensional electronic vibrational spectroscopy, in concert with electrochemical and computational techniques. A low-frequency mode is identified experimentally and found to promote double proton and electron transfer, supported by recent theoretical simulations of a similar but abbreviated (non-photoactive) system. Excitation frequency peak evolution and center line slope dynamics show direct evidence of strongly coupled nuclear and electronic degrees of freedom, from which we can conclude that the double proton and electron transfer processes are concerted (up to an uncertainty of 24 fs). The nonequilibrium pathway from the photoexcited Franck-Condon region to the E2PT state is characterized by an ∼110 fs time scale. This study and the tools presented herein constitute a new window into hot charge transfer processes involving an electron and multiple protons.


Assuntos
Elétrons , Prótons , Transporte de Elétrons , Movimento (Física) , Análise Espectral
4.
ChemMedChem ; 16(19): 3003-3016, 2021 10 06.
Artigo em Inglês | MEDLINE | ID: mdl-34231318

RESUMO

We prepared a series of free NH and N-substituted dibenzonthiazines with potential anti-tumor activity from N-aryl-benzenesulfonamides. A biological test of synthesized compounds (59 samples) was performed in vitro measuring their antiproliferative activity against a panel of six human solid tumor cell lines and its tubulin inhibitory activity. We identified 6-(phenylsulfonyl)-6H-dibenzo[c,e][1,2]thiazine 5,5-dioxide and 6-tosyl-6H-dibenzo[c,e][1,2]thiazine 5,5-dioxide as the best compounds with promising values of activity (overall range of 2-5.4 µM). Herein, we report the dibenzothiazine core as a novel building block with antiproliferative activity, targeting tubulin dynamics.


Assuntos
Antineoplásicos/farmacologia , Desenho de Fármacos , Compostos Heterocíclicos/farmacologia , Tiazinas/farmacologia , Moduladores de Tubulina/farmacologia , Tubulina (Proteína)/metabolismo , Animais , Antineoplásicos/síntese química , Antineoplásicos/química , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Bovinos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Compostos Heterocíclicos/síntese química , Compostos Heterocíclicos/química , Humanos , Estrutura Molecular , Relação Estrutura-Atividade , Tiazinas/química , Moduladores de Tubulina/síntese química , Moduladores de Tubulina/química
5.
J Am Chem Soc ; 142(52): 21842-21851, 2020 12 30.
Artigo em Inglês | MEDLINE | ID: mdl-33337139

RESUMO

The essential role of a well-defined hydrogen-bond network in achieving chemically reversible multiproton translocations triggered by one-electron electrochemical oxidation/reduction is investigated by using pyridylbenzimidazole-phenol models. The two molecular architectures designed for these studies differ with respect to the position of the N atom on the pyridyl ring. In one of the structures, a hydrogen-bond network extends uninterrupted across the molecule from the phenol to the pyridyl group. Experimental and theoretical evidence indicates that an overall chemically reversible two-proton-coupled electron-transfer process (E2PT) takes place upon electrochemical oxidation of the phenol. This E2PT process yields the pyridinium cation and is observed regardless of the cyclic voltammogram scan rate. In contrast, when the hydrogen-bond network is disrupted, as seen in the isomer, at high scan rates (∼1000 mV s-1) a chemically reversible process is observed with an E1/2 characteristic of a one-proton-coupled electron-transfer process (E1PT). At slow cyclic voltammetric scan rates (<1000 mV s-1) oxidation of the phenol results in an overall chemically irreversible two-proton-coupled electron-transfer process in which the second proton-transfer step yields the pyridinium cation detected by infrared spectroelectrochemistry. In this case, we postulate an initial intramolecular proton-coupled electron-transfer step yielding the E1PT product followed by a slow, likely intermolecular chemical step involving a second proton transfer to give the E2PT product. Insights into the electrochemical behavior of these systems are provided by theoretical calculations of the electrostatic potentials and electric fields at the site of the transferring protons for the forward and reverse processes. This work addresses a fundamental design principle for constructing molecular wires where protons are translocated over varied distances by a Grotthuss-type mechanism.

6.
J Org Chem ; 85(21): 13481-13494, 2020 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-32893628

RESUMO

Novel approaches for N- and O-desulfonylation under room temperature (rt) and transition-metal-free conditions have been developed. The first methodology involves the transformation of a variety of N-sulfonyl heterocycles and phenyl benzenesulfonates to the corresponding desulfonylated products in good to excellent yields using only KOtBu in dimethyl sulfoxide (DMSO) at rt. Alternately, a visible light method has been used for deprotection of N-methyl-N-arylsulfonamides with Hantzsch ester (HE) anion serving as the visible-light-absorbing reagent and electron and hydrogen atom donor to promote the desulfonylation reaction. The HE anion can be easily prepared in situ by reaction of the corresponding HE with KOtBu in DMSO at rt. Both protocols were further explored in terms of synthetic scope as well as mechanistic aspects to rationalize key features of desulfonylation processes. Furthermore, the HE anion induces reductive dehalogenation reaction of aryl halides under visible light irradiation.

7.
Org Lett ; 21(1): 320-324, 2019 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-30576154

RESUMO

A novel approach for the synthesis of tetracyclic indoles and 7-azaindoles is reported. The strategy involves four steps, with a fast rt intramolecular α-arylation of ketones as key step. The reaction was inspected synthetically to achieve the synthesis of 11 novel tetracyclic structures with moderate to very good yields (39-85%). Theoretical combined with experimental studies led us to propose a probable polar mechanism (concerted SNAr).

8.
J Org Chem ; 81(12): 4965-73, 2016 06 17.
Artigo em Inglês | MEDLINE | ID: mdl-27166973

RESUMO

A new and general synthetic route to prepare dibenzosultams is here reported. This approach involves the synthesis of N-aryl-2-halobenzenesulfonamides (3), followed by intramolecular C-C photoinduced arylation under soft conditions without the use of "Transition Metal". The photostimulated reactions exhibit very good tolerance to different substituent groups with good to excellent isolated yields (42-98%) of products. Moreover, it is shown that LED (λ = 395 nm) is an efficient light energy source to initiate efficiently the reactions. Theoretical inspection of the mechanism was made to probe the involvement of the radical-anion SRN1 process.

9.
J Org Chem ; 80(2): 928-41, 2015 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-25490433

RESUMO

An efficient and simple protocol for the preparation of a series of 9H-carbazoles by photostimulated SRN1 substitution reactions is presented. Substituted 9H-carbazoles were synthesized in low to excellent yields (up to 96%) through an intramolecular C­N bond formation of 2'-halo[1,1'-biphenyl]-2-amines by the photoinitiated SRN1 mechanism under mild and "transition-metal-free" conditions. The biphenylamines used as substrates were obtained with isolated yields ranging from 21% to 84% by two approaches: (A) the cross-coupling Suzuki­Miyaura reaction and (B) the radical arylation of anilines. Some key aspects of the proposed mechanism were evaluated at the B3LYP/6-311+G* level.


Assuntos
Compostos de Anilina/química , Compostos de Bifenilo/química , Carbazóis/síntese química , Metais/química , Elementos de Transição/química , Carbazóis/química , Catálise , Estrutura Molecular
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA