Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
An Acad Bras Cienc ; 85(1): 349-54, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23460444

RESUMO

Amylin is a 37-aminoacid pancreatic protein that exerts control over several metabolic events such as glycemia and lacticemia. Amylin has long been shown to induce increases in arterial plasma glucose. We decided to investigate whether amylin plays additional roles in the glucose metabolism. We evaluated glucose homeostasis using whole blood from the tail tip of fasting, conscious, unrestrained normal and streptozotocyn-induced diabetic mice following subcutaneous administration of mouse amylin. Subcutaneous injection of 1 µg mouse amylin caused a transient decrease in whole blood glucose in both normal and diabetic mice in the absence of insulin. The blood glucose levels were lowest approximately 2 hours after amylin administration, after that they gradually recovered to the levels of the control group. The hypoglycemic effect followed a dose-dependent response ranging from 0.1 to 50 µg / mouse. These results reveal the ability for amylin in the direct control of glycemia at low doses in the absence of insulin.


Assuntos
Hipoglicemia/induzido quimicamente , Polipeptídeo Amiloide das Ilhotas Pancreáticas/farmacologia , Animais , Diabetes Mellitus Experimental , Relação Dose-Resposta a Droga , Jejum/metabolismo , Homeostase , Polipeptídeo Amiloide das Ilhotas Pancreáticas/administração & dosagem , Masculino , Camundongos , Pâncreas/metabolismo
2.
PLoS One ; 6(7): e22857, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21829538

RESUMO

The amyloid precursor protein (APP) is well known for giving rise to the amyloid-ß peptide and for its role in Alzheimer's disease. Much less is known, however, on the physiological roles of APP in the development and plasticity of the central nervous system. We have used phage display of a peptide library to identify high-affinity ligands of purified recombinant human sAPPα(695) (the soluble, secreted ectodomain from the main neuronal APP isoform). Two peptides thus selected exhibited significant homologies with the conserved extracellular domain of several members of the semaphorin (Sema) family of axon guidance proteins. We show that sAPPα(695) binds both purified recombinant Sema3A and Sema3A secreted by transfected HEK293 cells. Interestingly, sAPPα(695) inhibited the collapse of embryonic chicken (Gallus gallus domesticus) dorsal root ganglia growth cones promoted by Sema3A (K(d)≤8·10(-9) M). Two Sema3A-derived peptides homologous to the peptides isolated by phage display blocked sAPPα binding and its inhibitory action on Sema3A function. These two peptides are comprised within a domain previously shown to be involved in binding of Sema3A to its cellular receptor, suggesting a competitive mechanism by which sAPPα modulates the biological action of semaphorins.


Assuntos
Precursor de Proteína beta-Amiloide/metabolismo , Gânglios Espinais/metabolismo , Cones de Crescimento/fisiologia , Fragmentos de Peptídeos/metabolismo , Semaforina-3A/metabolismo , Precursor de Proteína beta-Amiloide/genética , Animais , Células Cultivadas , Embrião de Galinha , Meios de Cultivo Condicionados/farmacologia , Gânglios Espinais/citologia , Humanos , Imunoprecipitação , Rim/citologia , Rim/efeitos dos fármacos , Rim/metabolismo , Biblioteca de Peptídeos , Conformação Proteica
3.
J Mol Biol ; 357(2): 493-508, 2006 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-16436282

RESUMO

Proteolytic cleavage of the amyloid precursor protein (APP) by beta and gamma-secretases gives rise to the beta-amyloid peptide, considered to be a causal factor in Alzheimer's disease. Conversely, the soluble extracellular domain of APP (sAPPalpha), released upon its cleavage by alpha-secretase, plays a number of important physiological functions. Several APP fragments have been structurally characterized at atomic resolution, but the structures of intact APP and of full-length sAPPalpha have not been determined. Here, ab initio reconstruction of molecular models from high-resolution solution X-ray scattering (SAXS) data for the two main isoforms of sAPPalpha (sAPPalpha(695) and sAPPalpha(770)) provided models of sufficiently high resolution to identify distinct structural domains of APP. The fragments for which structures are known at atomic resolution were fitted within the solution models of full-length sAPPalpha, allowing localization of important functional sites (i.e. glycosylation, protease inhibitory and heparin-binding sites). Furthermore, combined results from SAXS, analytical ultracentrifugation (AUC) and size-exclusion chromatography (SEC) analysis indicate that both sAPPalpha isoforms are monomeric in solution. On the other hand, SEC, bis-ANS fluorescence, AUC and SAXS measurements showed that sAPPalpha forms a 2:1 complex with heparin. A conformational model for the sAPPalpha:heparin complex was also derived from the SAXS data. Possible implications of such complex formation for the physiological dimerization of APP and biological signaling are discussed in terms of the structural models proposed.


Assuntos
Precursor de Proteína beta-Amiloide/química , Heparina/metabolismo , Isoformas de Proteínas/química , Estrutura Quaternária de Proteína , Estrutura Terciária de Proteína , Doença de Alzheimer/metabolismo , Precursor de Proteína beta-Amiloide/genética , Precursor de Proteína beta-Amiloide/metabolismo , Membrana Celular/química , Dimerização , Heparina/química , Humanos , Modelos Moleculares , Ligação Proteica , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Ultracentrifugação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA