Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Nucleic Acids Res ; 49(11): 6267-6280, 2021 06 21.
Artigo em Inglês | MEDLINE | ID: mdl-34096575

RESUMO

Prefoldin is a heterohexameric complex conserved from archaea to humans that plays a cochaperone role during the co-translational folding of actin and tubulin monomers. Additional functions of prefoldin have been described, including a positive contribution to transcription elongation and chromatin dynamics in yeast. Here we show that prefoldin perturbations provoked transcriptional alterations across the human genome. Severe pre-mRNA splicing defects were also detected, particularly after serum stimulation. We found impairment of co-transcriptional splicing during transcription elongation, which explains why the induction of long genes with a high number of introns was affected the most. We detected genome-wide prefoldin binding to transcribed genes and found that it correlated with the negative impact of prefoldin depletion on gene expression. Lack of prefoldin caused global decrease in Ser2 and Ser5 phosphorylation of the RNA polymerase II carboxy-terminal domain. It also reduced the recruitment of the CTD kinase CDK9 to transcribed genes, and the association of splicing factors PRP19 and U2AF65 to chromatin, which is known to depend on CTD phosphorylation. Altogether the reported results indicate that human prefoldin is able to act locally on the genome to modulate gene expression by influencing phosphorylation of elongating RNA polymerase II, and thereby regulating co-transcriptional splicing.


Assuntos
Chaperonas Moleculares/fisiologia , Splicing de RNA , RNA Mensageiro/metabolismo , Transcrição Gênica , Linhagem Celular , Humanos , Íntrons , RNA Polimerase II/metabolismo , Precursores de RNA/metabolismo , Fatores de Processamento de RNA/metabolismo , Proteínas Repressoras/fisiologia , Transcriptoma
2.
Acta Trop ; 143: 58-65, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25542296

RESUMO

Naja haje envenomation is one of the leading causes of death due to snakebite. Antiserum therapy sometimes fails to provide enough protection against venom toxicity. In this study, we investigated the protective effects of melatonin against N. haje venom in rats. The animals were injected with venom (0.25mg/kg) and/or melatonin (10mg/kg) and compared with vehicle-treated rats. There was oxidative/nitrosative damage and apoptosis in the liver, heart, and kidneys of venom-injected rats. Melatonin counteracted the increased lipoperoxidation and nitric oxide, prevented decreased glutathione peroxidase and reductase activity, reduced the glutathione disulfide/glutathione (GSSG/GSH) ratio, and maintained the GSH pool. Furthermore, melatonin administration was associated with a reduction of apoptosis, which was increased in venom-injected rats. Overall, these results suggest that melatonin mitigates oxidative/nitrosative stress in venom-induced cardio-hepato-renal injury in rats. Our results suggest that melatonin treatment may ameliorate some of the effects of N. haje envenomation.


Assuntos
Antioxidantes/farmacologia , Apoptose/efeitos dos fármacos , Venenos Elapídicos/toxicidade , Peroxidação de Lipídeos/efeitos dos fármacos , Melatonina/farmacologia , Óxido Nítrico/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Animais , Western Blotting , Elapidae , Glutationa Peroxidase/metabolismo , Glutationa Redutase/metabolismo , Coração , Hidroliases/metabolismo , Rim/patologia , Fígado/patologia , Masculino , Nitrosação , Oxirredução , Ratos , Ratos Wistar , Mordeduras de Serpentes/terapia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA