Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Dairy Sci ; 103(3): 2117-2127, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31928757

RESUMO

This study evaluated the organic residues of milk fouling using fluorescence and confocal laser scanning microscopy. The inorganic content was analyzed with energy-dispersive X-ray spectroscopy, complemented with inductively coupled plasma optical emission spectrometry. These techniques were applied to evaluate milk fouling cleanliness using an alkaline product and an enzymatic formulation based on protease and amylase. The results showed that the efficiency of enzymatic cleaning was 87.1% when it was evaluated at 55°C for 30 min, and with a medium of pH 8.5. No difference was found from the efficacy in eliminating dairy fouling observed for the chemical cleaning (86.9%). The fluorescence microscopy proved useful for determining the organic solid components in the outer layer of the dairy fouling. The fouling spatial disposition in 3 dimensions, obtained by confocal laser scanning microscopy, showed that it was formed of 51.3% sugars, 9.3% fats, and 39.4% proteins, with the enzymatic cleaning of these compounds being homogeneous, compared with chemical cleaning. The protein and lipid contents were in the surface layer, whereas sugars were located in the innermost part that contributes to the Maillard reaction during fouling formation. After enzymatic cleaning, the reduction in the concentration of Ca and P was 71.61 and 74.67%, respectively, compared with fouling intact. Thus, enzymatic cleaning, without the accumulation of Na from chemical cleaning, leaves 1.5 times less mineral than chemical cleaning. Knowing the content and structure of fouling in the industry helps to formulate better products to achieve proper levels of cleanliness. Additionally, studying the cleaning residues helps to avoid problems of cross-contamination between batches or subsequent microbial growths (biofilms) on surfaces with residues.


Assuntos
Contaminação de Alimentos , Leite/química , Animais , Indústria de Laticínios , Feminino , Membranas Artificiais , Microscopia Confocal , Espectrometria por Raios X
2.
Lab Chip ; 15(7): 1717-26, 2015 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-25669844

RESUMO

Phenolic compounds are one of the main contaminants of soil and water due to their toxicity and persistence in the natural environment. Their presence is commonly determined with bulky and expensive instrumentation (e.g. chromatography systems), requiring sample collection and transport to the laboratory. Sample transport delays data acquisition, postponing potential actions to prevent environmental catastrophes. This article presents a portable, miniaturized, robust and low-cost microbial trench-based optofluidic system for reagentless determination of phenols in water. The optofluidic system is composed of a poly(methyl methacrylate) structure, incorporating polymeric optical elements and miniaturized discrete auxiliary components for optical transduction. An electronic circuit, adapted from a lock-in amplifier, is used for system control and interfering ambient light subtraction. In the trench, genetically modified bacteria are stably entrapped in an alginate hydrogel for quantitative determination of model phenol catechol. Alginate is also acting as a diffusion barrier for compounds present in the sample. Additionally, the superior refractive index of the gel (compared to water) confines the light in the lower level of the chip. Hence, the optical readout of the device is only altered by changes in the trench. Catechol molecules (colorless) in the sample diffuse through the alginate matrix and reach bacteria, which degrade them to a colored compound. The absorbance increase at 450 nm reports the presence of catechol simply, quickly (~10 min) and quantitatively without addition of chemical reagents. This miniaturized, portable and robust optofluidic system opens the possibility for quick and reliable determination of environmental contamination in situ, thus mitigating the effects of accidental spills.


Assuntos
Técnicas Analíticas Microfluídicas/instrumentação , Fenóis/análise , Poluentes Químicos da Água/análise , Alginatos , Técnicas Biossensoriais/instrumentação , Colorimetria , Escherichia coli , Ácido Glucurônico , Ácidos Hexurônicos , Hidrogéis , Técnicas Analíticas Microfluídicas/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA