Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Ann Neurol ; 94(2): 398-413, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37186119

RESUMO

OBJECTIVE: Facioscapulohumeral muscular dystrophy (FSHD) is caused by abnormal de-repression of the myotoxic transcription factor DUX4. Although the transcriptional targets of DUX4 are known, the regulation of DUX4 protein and the molecular consequences of this regulation are unclear. Here, we used in vitro models of FSHD to identify and characterize DUX4 post-translational modifications (PTMs) and their impact on the toxic function of DUX4. METHODS: We immunoprecipitated DUX4 protein and performed mass spectrometry to identify PTMs. We then characterized DUX4 PTMs and potential enzyme modifiers using mutagenesis, proteomics, and biochemical assays in HEK293 and human myoblast cell lines. RESULTS: We identified 17 DUX4 amino acids with PTMs, and generated 55 DUX4 mutants designed to prevent or mimic PTMs. Five mutants protected cells against DUX4-mediated toxicity and reduced the ability of DUX4 to transactivate FSHD biomarkers. These mutagenesis results suggested that DUX4 toxicity could be counteracted by serine/threonine phosphorylation and/or inhibition of arginine methylation. We therefore sought to identify modifying enzymes that could play a role in regulating DUX4 PTMs. We found several enzymes capable of modifying DUX4 protein in vitro, and confirmed that protein kinase A (PKA) and protein arginine methyltransferase (PRMT1) interact with DUX4. INTERPRETATION: These results support that DUX4 is regulated by PTMs and set a foundation for developing FSHD drug screens based mechanistically on DUX4 PTMs and modifying enzymes. ANN NEUROL 2023;94:398-413.


Assuntos
Distrofia Muscular Facioescapuloumeral , Humanos , Regulação da Expressão Gênica , Células HEK293 , Proteínas de Homeodomínio/genética , Músculo Esquelético/metabolismo , Distrofia Muscular Facioescapuloumeral/genética , Processamento de Proteína Pós-Traducional , Proteína-Arginina N-Metiltransferases/genética , Proteína-Arginina N-Metiltransferases/metabolismo , Proteínas Repressoras/metabolismo
2.
Adv Biol Regul ; 63: 167-176, 2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-27773744

RESUMO

Expression of Fhit and Wwox protein is frequently lost or reduced in many human cancers. In this report, we provide data that further characterizes the molecular consequences of Fhit loss in the initiation of DNA double-strand breaks (DSBs), and of Wwox loss in altered repair of DSBs. We show that loss of Fhit initiates mild genome instability in early passage mouse kidney cells, confirming that DNA damage associated with Fhit-deficiency is not limited to cancer cells. We also demonstrate that the cause of Fhit-deficient DSBs: thymidine deficiency-induced replication stress, can be resolved with thymidine supplementation in early passage mouse kidney cells before extensive genome instability occurs. As for consequences of Wwox loss in cancer, we show in a small panel of breast cancer cells and mouse embryonic fibroblasts that Wwox expression predicts response to radiation and mitomycin C, all agents that cause DSBs. In addition, loss of Wwox significantly reduced progression free survival in a cohort of ovarian cancer patients treated with platin-based chemotherapies. Finally, stratification of a cohort of squamous lung cancers by Fhit expression reveals that Wwox expression is significantly reduced in the low Fhit-expressing group, suggesting that loss of Fhit is quickly succeeded by loss of Wwox. We propose that Fhit and Wwox loss work synergistically in cancer progression and that DNA damage caused by Fhit could be targeted early in cancer initiation for prevention, while DNA damage caused by Wwox loss could be targeted later in cancer progression, particularly in cancers that develop resistance to genotoxic therapies.


Assuntos
Hidrolases Anidrido Ácido/genética , Neoplasias da Mama/genética , Regulação Neoplásica da Expressão Gênica , Instabilidade Genômica , Neoplasias Pulmonares/genética , Proteínas de Neoplasias/genética , Neoplasias Ovarianas/genética , Proteínas Supressoras de Tumor/genética , Oxidorredutase com Domínios WW/genética , Hidrolases Anidrido Ácido/deficiência , Animais , Antineoplásicos/uso terapêutico , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/mortalidade , Neoplasias da Mama/patologia , Quebras de DNA de Cadeia Dupla , Reparo do DNA , DNA de Neoplasias/genética , DNA de Neoplasias/metabolismo , Feminino , Humanos , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/mortalidade , Neoplasias Pulmonares/patologia , Camundongos , Proteínas de Neoplasias/deficiência , Neoplasias Ovarianas/tratamento farmacológico , Neoplasias Ovarianas/mortalidade , Neoplasias Ovarianas/patologia , Transdução de Sinais , Análise de Sobrevida , Proteínas Supressoras de Tumor/deficiência , Oxidorredutase com Domínios WW/deficiência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA