Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 15(1): 2197, 2024 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-38467628

RESUMO

The superconductivity in systems containing dispersionless (flat) bands is seemingly paradoxical, as traditional Bardeen-Cooper-Schrieffer theory requires an infinite enhancement of the carrier masses. However, the combination of flat and steep (dispersive) bands within the multiple band scenario might boost superconducting responses, potentially explaining high-temperature superconductivity in cuprates and metal hydrides. Here, we report on the magnetic penetration depths, the upper critical field, and the specific heat measurements, together with the first-principles calculations for the Mo5Si3-xPx superconducting family. The band structure features a flat band that gradually approaches the Fermi level as a function of phosphorus doping x, reaching the Fermi level at x ≃ 1.3. This leads to an abrupt change in nearly all superconducting quantities. The superfluid density data placed on the 'Uemura plot' results in two separated branches, thus indicating that the emergence of a flat band enhances correlations between conducting electrons.

3.
Nat Commun ; 15(1): 1658, 2024 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-38395887

RESUMO

Charge density wave (CDW) orders in vanadium-based kagome metals have recently received tremendous attention, yet their origin remains a topic of debate. The discovery of ScV6Sn6, a bilayer kagome metal featuring an intriguing [Formula: see text] CDW order, offers a novel platform to explore the underlying mechanism behind the unconventional CDW. Here, we combine high-resolution angle-resolved photoemission spectroscopy, Raman scattering and density functional theory to investigate the electronic structure and phonon modes of ScV6Sn6. We identify topologically nontrivial surface states and multiple van Hove singularities (VHSs) in the vicinity of the Fermi level, with one VHS aligning with the in-plane component of the CDW vector near the [Formula: see text] point. Additionally, Raman measurements indicate a strong electron-phonon coupling, as evidenced by a two-phonon mode and new emergent modes. Our findings highlight the fundamental role of lattice degrees of freedom in promoting the CDW in ScV6Sn6.

4.
J Phys Condens Matter ; 36(18)2024 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-38241749

RESUMO

We report on (resonant) x-ray diffraction experiments on the normal state properties of kagome-lattice superconductors KV3Sb5and RbV3Sb5. We have confirmed previous reports indicating that the charge density wave (CDW) phase is characterized by a doubling of the unit cell in all three crystallographic directions. By monitoring the temperature dependence of Bragg peaks associated with the CDW phase, we ascertained that it develops gradually over several degrees, as opposed to CsV3Sb5, where the CDW peak intensity saturates promptly just below the CDW transition temperature. Analysis of symmetry modes indicates that this behavior arises due to lattice distortions linked to the formation of CDWs. These distortions occur abruptly in CsV3Sb5, while they progress more gradually in RbV3Sb5and KV3Sb5. In contrast, the amplitude of the mode leading to the crystallographic symmetry breaking fromP6/mmmtoFmmmappears to develop more gradually in CsV3Sb5as well. Diffraction measurements close to the V K edge and the Sb L1edge show no sensitivity to inversion- or time-symmetry breaking, which are claimed to be associated with the onset of the CDW phase. The azimuthal angle dependence of the resonant diffraction intensity observed at the Sb L1edge is associated with the difference in the population of unoccupied states and the anisotropy of the electron density of certain Sb ions.

5.
Inorg Chem ; 63(1): 247-255, 2024 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-38101323

RESUMO

To elucidate the impact of a high entropy elemental distribution of the lattice site on the magnetic properties in oxide compounds, a series of complex perovskites BaBO3 (B = Y, Fe, Ti, Zr, Hf, Nb, and Ta) with different Fe content ratios (0, 0.2, 0.3, and 0.4) have been synthesized and thoroughly characterized. In this complex oxide series, superconducting quantum interference device magnetometry reveals a gradual change of a well-defined magnetic phase transition and B-site magnetic moment, which correlates with the Fe content. More importantly, a comprehensive analysis of the sample with a 0.4-Fe content (40% on the B-site) including magnetization, heat capacity, neutron diffraction, and muon-spin rotation measurements suggests that in the low-temperature state, a short-range antiferromagnetic correlation may exist, which could result from the magnetic interaction of Fe ions and consequent redistribution of associated d-electrons.

6.
Phys Rev Lett ; 131(23): 236001, 2023 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-38134793

RESUMO

We report on measurements of the in-plane magnetic penetration depth (λ_{ab}) in single crystals of Sr_{2}RuO_{4} down to ≃0.015 K by means of muon-spin rotation-relaxation. The linear temperature dependence of λ_{ab}^{-2} for T≲0.7 K suggests the presence of nodes in the superconducting gap. This statement is further substantiated by observation of the Volovik effect, i.e., the reduction of λ_{ab}^{-2} as a function of the applied magnetic field. The experimental zero-field and zero-temperature value of λ_{ab}=124(3) nm agrees with λ_{ab}≃130 nm, calculated based on results of electronic structure measurements reported in A. Tamai et al. [High-resolution photoemission on Sr_{2}RuO_{4} reveals correlation-enhanced effective spin-orbit coupling and dominantly local self-energies, Phys. Rev. X 9, 021048 (2019)PRXHAE2160-330810.1103/PhysRevX.9.021048]. Our analysis reveals that a simple nodal superconducting energy gap, described by the lowest possible harmonic of a gap function, does not capture the dependence of λ_{ab}^{-2} on T, so the higher angular harmonics of the energy gap function need to be introduced.

7.
Proc Natl Acad Sci U S A ; 120(21): e2208276120, 2023 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-37186859

RESUMO

Iron-chalcogenide superconductors FeSe1-xSx possess unique electronic properties such as nonmagnetic nematic order and its quantum critical point. The nature of superconductivity with such nematicity is important for understanding the mechanism of unconventional superconductivity. A recent theory suggested the possible emergence of a fundamentally new class of superconductivity with the so-called Bogoliubov Fermi surfaces (BFSs) in this system. However, such an ultranodal pair state requires broken time-reversal symmetry (TRS) in the superconducting state, which has not been observed experimentally. Here, we report muon spin relaxation (µSR) measurements in FeSe1-xSx superconductors for 0 ≤ x ≤ 0.22 covering both orthorhombic (nematic) and tetragonal phases. We find that the zero-field muon relaxation rate is enhanced below the superconducting transition temperature Tc for all compositions, indicating that the superconducting state breaks TRS both in the nematic and tetragonal phases. Moreover, the transverse-field µSR measurements reveal that the superfluid density shows an unexpected and substantial reduction in the tetragonal phase (x > 0.17). This implies that a significant fraction of electrons remain unpaired in the zero-temperature limit, which cannot be explained by the known unconventional superconducting states with point or line nodes. The TRS breaking and the suppressed superfluid density in the tetragonal phase, together with the reported enhanced zero-energy excitations, are consistent with the ultranodal pair state with BFSs. The present results reveal two different superconducting states with broken TRS separated by the nematic critical point in FeSe1-xSx, which calls for the theory of microscopic origins that account for the relation between nematicity and superconductivity.

8.
Nature ; 617(7961): 488-492, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37100906

RESUMO

The newly discovered kagome superconductors represent a promising platform for investigating the interplay between band topology, electronic order and lattice geometry1-9. Despite extensive research efforts on this system, the nature of the superconducting ground state remains elusive10-17. In particular, consensus on the electron pairing symmetry has not been achieved so far18-20, in part owing to the lack of a momentum-resolved measurement of the superconducting gap structure. Here we report the direct observation of a nodeless, nearly isotropic and orbital-independent superconducting gap in the momentum space of two exemplary CsV3Sb5-derived kagome superconductors-Cs(V0.93Nb0.07)3Sb5 and Cs(V0.86Ta0.14)3Sb5-using ultrahigh-resolution and low-temperature angle-resolved photoemission spectroscopy. Remarkably, such a gap structure is robust to the appearance or absence of charge order in the normal state, tuned by isovalent Nb/Ta substitutions of V. Our comprehensive characterizations of the superconducting gap provide indispensable information on the electron pairing symmetry of kagome superconductors, and advance our understanding of the superconductivity and intertwined electronic orders in quantum materials.

9.
Phys Rev Lett ; 129(16): 166401, 2022 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-36306757

RESUMO

Kagome materials often host exotic quantum phases, including spin liquids, Chern gap, charge density wave, and superconductivity. Existing scanning microscopy studies of the kagome charge order have been limited to nonkagome surface layers. Here, we tunnel into the kagome lattice of FeGe to uncover features of the charge order. Our spectroscopic imaging identifies a 2×2 charge order in the magnetic kagome lattice, resembling that discovered in kagome superconductors. Spin mapping across steps of unit cell height demonstrates the existence of spin-polarized electrons with an antiferromagnetic stacking order. We further uncover the correlation between antiferromagnetism and charge order anisotropy, highlighting the unusual magnetic coupling of the charge order. Finally, we detect a pronounced edge state within the charge order energy gap, which is robust against the irregular shape fluctuations of the kagome lattice edges. We discuss our results with the theoretically considered topological features of the kagome charge order including unconventional magnetism and bulk-boundary correspondence.

10.
Sci Rep ; 12(1): 17526, 2022 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-36266305

RESUMO

The magnetic phase diagram of Sr[Formula: see text]Ca[Formula: see text]Co[Formula: see text]P[Formula: see text] as a function of hydrostatic pressure and temperature is investigated by means of high pressure muon spin rotation, relaxation and resonance ([Formula: see text]SR). The weak pressure dependence for the [Formula: see text] compounds suggests that the rich phase diagram of Sr[Formula: see text]Ca[Formula: see text]Co[Formula: see text]P[Formula: see text] as a function of x at ambient pressure may not solely be attributed to chemical pressure effects. The [Formula: see text] compound on the other hand reveals a high pressure dependence, where the long range magnetic order is fully suppressed at [Formula: see text] kbar, which seem to be a first order transition. In addition, an intermediate phase consisting of magnetic domains is formed above [Formula: see text] kbar where they co-exist with a magnetically disordered state. These domains are likely to be ferromagnetic islands (FMI) and consist of an high- (FMI-[Formula: see text]) and low-temperature (FMI-[Formula: see text]) region, respectively, separated by a phase boundary at [Formula: see text] K. This kind of co-existence is unusual and is originating from a coupling between lattice and magnetic degrees of freedoms.

11.
Sci Rep ; 12(1): 13184, 2022 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-35915217

RESUMO

We report on the dynamics of a magnetic-field-driven antiferromagnetic-to-paramagnetic quantum phase transition in monocrystalline Ce3Al via transverse-field muon spin rotation (TF-µSR) experiments down to low temperature of [Formula: see text] 80 mK. The quantum phase transition is of a spin-flip type and takes place on the Ce-Al magnetic chains as a result of competition between the indirect exchange and the Zeeman interaction of the Ce moments with the external field, applied along the chain direction (also the direction of the antiferromagnetic axis). The Ce moments are not static at [Formula: see text] 0, but fluctuate in their direction due to the Heisenberg uncertainty principle. Upon applying the magnetic field sweep, the fluctuations exhibit the largest amplitude at the quantum critical point, manifested in a maximum of the muon transverse relaxation rate at the critical field. The quantum nature of fluctuations observed in the TF-µSR experiments is reflected in the temperature independence of the average local magnetic field component along the external magnetic field at the muon stopping site(s) and the muon transverse relaxation rate within the investigated temperature range 1.5 K-80 mK. Quantum fluctuations are fast on the muon Larmor frequency scale, [Formula: see text] 10-10 s.

12.
Nat Commun ; 13(1): 4745, 2022 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-35961970

RESUMO

The van-der-Waals material CrSBr stands out as a promising two-dimensional magnet. Here, we report on its detailed magnetic and structural characteristics. We evidence that it undergoes a transition to an A-type antiferromagnetic state below TN ≈ 140 K with a pronounced two-dimensional character, preceded by ferromagnetic correlations within the monolayers. Furthermore, we unravel the low-temperature hidden-order within the long-range magnetically-ordered state. We find that it is associated to a slowing down of the magnetic fluctuations, accompanied by a continuous reorientation of the internal field. These take place upon cooling below Ts ≈ 100 K, until a spin freezing process occurs at T* ≈ 40 K. We argue this complex behavior to reflect a crossover driven by the in-plane uniaxial anisotropy, which is ultimately caused by its mixed-anion character. Our findings reinforce CrSBr as an important candidate for devices in the emergent field of two-dimensional magnetic materials.

13.
ACS Nano ; 16(5): 6960-7079, 2022 05 24.
Artigo em Inglês | MEDLINE | ID: mdl-35442017

RESUMO

Magnetism in two-dimensional (2D) van der Waals (vdW) materials has recently emerged as one of the most promising areas in condensed matter research, with many exciting emerging properties and significant potential for applications ranging from topological magnonics to low-power spintronics, quantum computing, and optical communications. In the brief time after their discovery, 2D magnets have blossomed into a rich area for investigation, where fundamental concepts in magnetism are challenged by the behavior of spins that can develop at the single layer limit. However, much effort is still needed in multiple fronts before 2D magnets can be routinely used for practical implementations. In this comprehensive review, prominent authors with expertise in complementary fields of 2D magnetism (i.e., synthesis, device engineering, magneto-optics, imaging, transport, mechanics, spin excitations, and theory and simulations) have joined together to provide a genome of current knowledge and a guideline for future developments in 2D magnetic materials research.


Assuntos
Metodologias Computacionais , Teoria Quântica , Fenômenos Magnéticos
14.
Phys Rev Lett ; 127(21): 217002, 2021 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-34860073

RESUMO

We investigated the superconducting properties of the topological superconductor α-PdBi_{2} at ambient and external pressures up to 1.77 GPa using muon spin rotation experiments. The ambient pressure measurements evince a fully gapped s-wave superconducting state in the bulk of the specimen. Alternating current magnetic susceptibility and muon spin rotation measurements manifest a continuous suppression of T_{c} with increasing pressure. In parallel, we observed a significant decrease of superfluid density by ∼20% upon application of external pressure. Remarkably, the superfluid density follows a linear relation with T_{c}, which was found before in some unconventional topological superconductors and hole-doped cuprates. This finding signals a possible crossover from Bose-Einstein to Bardeen-Cooper-Schrieffer like condensation in α-PdBi_{2}.

15.
Nat Commun ; 12(1): 6265, 2021 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-34725340

RESUMO

CrI3 has raised as an important system to the emergent field of two-dimensional van der Waals magnetic materials. However, it is still unclear why CrI3 which has a ferromagnetic rhombohedral structure in bulk, changed to anti-ferromagnetic monoclinic at thin layers. Here we show that this behaviour is due to the coexistence of both monoclinic and rhombohedral crystal phases followed by three magnetic transitions at TC1 = 61 K, TC2 = 50 K and TC3 = 25 K. Each transition corresponds to a certain fraction of the magnetically ordered volume as well as monoclinic and rhombohedral proportion. The different phases are continuously accessed as a function of the temperature over a broad range of magnitudes. Our findings suggest that the challenge of understanding the magnetic properties of thin layers CrI3 is in general a coexisting structural-phase problem mediated by the volume-wise competition between magnetic phases already present in bulk.

16.
Nat Mater ; 20(10): 1353-1357, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34112979

RESUMO

Intertwining quantum order and non-trivial topology is at the frontier of condensed matter physics1-4. A charge-density-wave-like order with orbital currents has been proposed for achieving the quantum anomalous Hall effect5,6 in topological materials and for the hidden phase in cuprate high-temperature superconductors7,8. However, the experimental realization of such an order is challenging. Here we use high-resolution scanning tunnelling microscopy to discover an unconventional chiral charge order in a kagome material, KV3Sb5, with both a topological band structure and a superconducting ground state. Through both topography and spectroscopic imaging, we observe a robust 2 × 2 superlattice. Spectroscopically, an energy gap opens at the Fermi level, across which the 2 × 2 charge modulation exhibits an intensity reversal in real space, signalling charge ordering. At the impurity-pinning-free region, the strength of intrinsic charge modulations further exhibits chiral anisotropy with unusual magnetic field response. Theoretical analysis of our experiments suggests a tantalizing unconventional chiral charge density wave in the frustrated kagome lattice, which can not only lead to a large anomalous Hall effect with orbital magnetism, but also be a precursor of unconventional superconductivity.

17.
Phys Rev Lett ; 127(25): 256403, 2021 Dec 17.
Artigo em Inglês | MEDLINE | ID: mdl-35029418

RESUMO

The manipulation of topological states in quantum matter is an essential pursuit of fundamental physics and next-generation quantum technology. Here we report the magnetic manipulation of Weyl fermions in the kagome spin-orbit semimetal Co_{3}Sn_{2}S_{2}, observed by high-resolution photoemission spectroscopy. We demonstrate the exchange collapse of spin-orbit-gapped ferromagnetic Weyl loops into paramagnetic Dirac loops under suppression of the magnetic order. We further observe that topological Fermi arcs disappear in the paramagnetic phase, suggesting the annihilation of exchange-split Weyl points. Our findings indicate that magnetic exchange collapse naturally drives Weyl fermion annihilation, opening new opportunities for engineering topology under correlated order parameters.

18.
Inorg Chem ; 59(24): 17970-17980, 2020 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-33264565

RESUMO

The crystal structure and magnetic properties of the cubic spinel MgFeMnO4 were studied by using a series of in-house techniques along with large-scale neutron diffraction and muon spin rotation spectroscopy in the temperature range between 1.5 and 500 K. The detailed crystal structure is successfully refined by using a cubic spinel structure described by the space group Fd3̅m. Cations within tetrahedral A and octahedral B sites of the spinel were found to be in a disordered state. The extracted fractional site occupancies confirm the presence of antisite defects, which are of importance for the electrochemical performance of MgFeMnO4 and related battery materials. Neutron diffraction and muon spin spectroscopy reveal a ferrimagnetic order below TC = 394.2 K, having a collinear spin arrangement with antiparallel spins at the A and B sites, respectively. Our findings provide new and improved understanding of the fundamental properties of the ferrispinel materials and of their potential applications within future spintronics and battery devices.

19.
Sci Rep ; 10(1): 18305, 2020 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-33110126

RESUMO

In the quest for developing novel and efficient batteries, a great interest has been raised for sustainable K-based honeycomb layer oxide materials, both for their application in energy devices as well as for their fundamental material properties. A key issue in the realization of efficient batteries based on such compounds, is to understand the K-ion diffusion mechanism. However, investigation of potassium-ion (K[Formula: see text]) dynamics in materials using e.g. NMR and related techniques has so far been very challenging, due to its inherently weak nuclear magnetic moment, in contrast to other alkali ions such as lithium and sodium. Spin-polarised muons, having a high gyromagnetic ratio, make the muon spin rotation and relaxation ([Formula: see text]SR) technique ideal for probing ions dynamics in these types of energy materials. Here we present a study of the low-temperature magnetic properties as well as K[Formula: see text] dynamics in honeycomb layered oxide material [Formula: see text] using mainly the [Formula: see text]SR technique. Our low-temperature [Formula: see text]SR results together with complementary magnetic susceptibility measurements find an antiferromagnetic transition at [Formula: see text] K. Further [Formula: see text]SR studies performed at higher temperatures reveal that potassium ions (K[Formula: see text]) become mobile above 200 K and the activation energy for the diffusion process is obtained as [Formula: see text] meV. This is the first time that K[Formula: see text] dynamics in potassium-based battery materials has been measured using [Formula: see text]SR. Assisted by high-resolution neutron diffraction, the temperature dependence of the K-ion self diffusion constant is also extracted. Finally our results also reveal that K-ion diffusion occurs predominantly at the surface of the powder particles. This opens future possibilities for potentially improving ion diffusion as well as K-ion battery device performance using nano-structuring and surface coatings of the particles.

20.
Nat Commun ; 11(1): 4415, 2020 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-32887890

RESUMO

Quantum states induced by single-atomic impurities are at the frontier of physics and material science. While such states have been reported in high-temperature superconductors and dilute magnetic semiconductors, they are unexplored in topological magnets which can feature spin-orbit tunability. Here we use spin-polarized scanning tunneling microscopy/spectroscopy (STM/S) to study the engineered quantum impurity in a topological magnet Co3Sn2S2. We find that each substituted In impurity introduces a striking localized bound state. Our systematic magnetization-polarized probe reveals that this bound state is spin-down polarized, in lock with a negative orbital magnetization. Moreover, the magnetic bound states of neighboring impurities interact to form quantized orbitals, exhibiting an intriguing spin-orbit splitting, analogous to the splitting of the topological fermion line. Our work collectively demonstrates the strong spin-orbit effect of the single-atomic impurity at the quantum level, suggesting that a nonmagnetic impurity can introduce spin-orbit coupled magnetic resonance in topological magnets.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA