Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Zhongguo Zhong Yao Za Zhi ; 48(17): 4722-4730, 2023 Sep.
Artigo em Chinês | MEDLINE | ID: mdl-37802811

RESUMO

This study aims to investigate the regulatory effects of Astragalus polysaccharide(APS) and APS combined with 5-fluorouracil(5-FU) on indoleamine-2,3-dioxygenase(IDO1) in the colon tumor microenvironment. Sixty Balb/c mice were randomized into a blank group, a model group, an APS group, an APS + 5-FU group, an APS + low-dose 5-FU group, and a 5-FU group. A tumor model was established by subcutaneous transplantation with CT-26 mouse colon cancer cells in other groups except the blank group. After successful modeling, each group was treated with corresponding drugs for 7 days. The general condition, body weight, and tumor volume of the mice were observed and measured daily during the treatment period. The mice were sacrificed at the end of treatment, and the tumor suppression rate and spleen index of the mice were calculated. Western blot and fluorescence quantitative PCR were employed to determine the protein and mRNA levels, respectively, of IDO1 in the tumor tissue of mice. High performance liquid chromatography was employed to measure the levels of tryptophan(Trp) and kynurenine(Kyn) in the tumor tissue of mice. Hematoxylin-eosin(HE) staining was performed to observe the histological changes of the tumor tissue, and immunohistochemistry to detect the changes of CD4 and CD8 expression in the tumor tissue. Compared with that in the model group, the tumor volume of mice in each treatment group significantly reduced. The body weights of mice in APS + 5-FU group and 5-FU group significantly reduced from day 4 to day 7 of treatment. In addition, the APS + 5-FU group and 5-FU group showed significantly decreased spleen index. The protein and mRNA levels of IDO1 were significantly down-regulated in the APS, APS + 5-FU, and APS + low-dose 5-FU groups. The drug interventions significantly increased the Trp content and decreased the Kyn content. The APS + 5-FU group showed significantly reduced infiltration of CD4~+ T lymphocytes and increased infiltration of CD8~+ T lymphocytes. APS inhibited the expression of IDO1 in the colon tumor microenvironment to increase CD8~+ T lymphocyte infiltration, and the combination of APS with 5-FU demonstrated better effect.


Assuntos
Neoplasias do Colo , Microambiente Tumoral , Camundongos , Animais , Neoplasias do Colo/tratamento farmacológico , Neoplasias do Colo/genética , Fluoruracila/farmacologia , Polissacarídeos/farmacologia , Linfócitos T CD8-Positivos/metabolismo , RNA Mensageiro/metabolismo
2.
Front Oncol ; 13: 1190706, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37771438

RESUMO

Objective: To profile the serum metabolites and metabolic pathways in colorectal cancer (CRC) patients associated with spleen-deficiency and qi-stagnation syndrome (SDQSS) or damp-heat syndrome (DHS). Methods: From May 2020 to January 2021, CRC patients diagnosed with traditional Chinese medicine (TCM) syndromes of SDQSS or DHS were enrolled. The clinicopathological data of the SDQSS and DHS groups were compared. The serum samples were analyzed by liquid chromatography-mass spectrometry (LC-MS). The variable importance in the projection >1, fold change ≥3 or ≤0.333, and P value ≤0.05 were used to identify differential metabolites between the two groups. Furthermore, areas under the receiver operating characteristic (ROC) curve > 0.9 were applied to select biomarkers with good predictive performance. The enrichment metabolic pathways were searched through the database of Kyoto Encyclopedia of Genes and Genomes. Results: 60 CRC patients were included (30 SDQSS and 30 DHS). The level of alanine aminotransferase was marginally significantly higher in the DHS group than the SDQSS group (P = 0.051). The other baseline clinicopathological characteristics were all comparable between the two groups. 23 differential serum metabolites were identified, among which 16 were significantly up-regulated and 7 were significantly down-regulated in the SDQSS group compared with the DHS group. ROC curve analysis showed that (S)-3-methyl-2-oxopentanoic acid, neocembrene, 1-aminocyclopropanecarboxylic acid, 3-methyl-3-hydroxypentanedioate, and nicotine were symbolic differential metabolites with higher predictive power. The top five enrichment signalling pathways were valine, leucine and isoleucine biosynthesis; lysosome; nicotine addiction; fructose and mannose metabolism; and pertussis. Conclusion: Our study identifies the differential metabolites and characteristic metabolic pathways among CRC patients with SDQSS or DHS, offering the possibility of accurate and objective syndrome differentiation and TCM treatment for CRC patients.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA