Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Opt Lett ; 48(11): 2897-2900, 2023 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-37262238

RESUMO

The main purposes of this work are designing new hybrid structures based on alumina nanoporous membranes with specific metallosupramolecular structure as well as studies of their usefulness in nonlinear optics (NLO). The NLO studies of the hybrid material is performed on the basis of two methods: the first by the Maker fringe technique, where the second harmonic generation (SHG) signal is recorded by rotating the sample; and the second by SHG imaging microscopy, where the SHG signal is collected point by point on the sample surface. The enhanced SHG signals were obtained without the use of the corona poling method needed during the experiment on thin films in our previous works and clearly shows the efficiency of hybrid materials based on nanoporous membranes as promising materials in devices developed based on NLO.

2.
Nanomaterials (Basel) ; 14(1)2023 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-38202504

RESUMO

This article covers selected properties of organic-inorganic thin films of hybrid perovskites with the summary formulas CH3NH3MI3, where M = Pb, Cd, Ge, Sn, Zn. The paper discusses not only the history, general structure, applications of perovskites and the basics of the theory of nonlinear optics, but also the results of experimental research on their structural, spectroscopic, and nonlinear optical properties. The samples used in all presented studies were prepared in the physical vapor deposition process by using co-deposition from two independent thermal sources containing the organic and inorganic parts of individual perovskites. Ultimately, thin layers with a thickness of the order of nanometers were obtained on glass and crystalline substrates. Their structural properties were characterized by atomic force microscopy imaging. Spectroscopic tests were used to confirm the tested films' transmission quality and determine previously unknown physical parameters, such as the absorption coefficient and refractive index. Experimental results of the nonlinear optical properties were obtained by studying the second and third harmonic generation processes and using initial sample polarization in the so-called Corona poling process. The obtained experimental results allowed us to determine the second- and third-order nonlinear optical susceptibility of the tested materials.

3.
Sci Rep ; 12(1): 11959, 2022 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-35831454

RESUMO

The development of new applications based on glass doped with nanoparticles is growing in interest during the last years. The structure and properties of Ca-based silicate nanoparticles formed in situ in a silica matrix through a phase separation mechanism were investigated by using Molecular Dynamics simulations and compared to nanoparticles formed from MgO-codoping. We showed that such nanoparticles have non-spherical shape, are amorphous and inhomogeneously distributed in the host glass. In this modeled structure, a release of non-bridging oxygen atoms, due to a depolymerization phenomenon of the nanoparticles' silica network, was observed. Besides, we demonstrated that nanoparticles' composition is size-dependent. Compared to Mg-silicate nanoparticles, Ca-based nanoparticles are larger, less concentrated in Ca, and we observed a steeper concentration change during the phase separation process. Those differences are related to the diffusion coefficients of Ca and Mg. This numerical analysis informs on the alkaline-earth nanoparticles' properties within a host silica glass, which can be a relevant guide for the development of new materials for applications such as nanoparticle-doped optical fibers.

4.
Opt Lett ; 46(4): 845-848, 2021 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-33577526

RESUMO

Second-order nonlinear optics is the base for a large variety of devices aimed at the active manipulation of light. However, physical principles restrict its occurrence to non-centrosymmetric, anisotropic matter. This significantly limits the number of base materials exhibiting nonlinear optics. Here, we show that embedding chromophores in an array of conical channels 13 nm across in monolithic silica results in mesoscopic anisotropic matter and thus in a hybrid material showing second-harmonic generation. This nonlinear optics is compared to the one achieved in corona-poled polymer films containing the identical chromophores. It originates in the confinement-induced orientational order of the elongated guest molecules in the nanochannels. This leads to a non-centrosymmetric dipolar order and hence to a nonlinear light-matter interaction on the sub-wavelength, single-pore scale. Our study demonstrates that the advent of large-scale, self-organized nanoporosity in monolithic solids along with the confinement-controllable orientational order of chromophores at the single-pore scale provides a reliable and accessible tool to design materials with a nonlinear meta-optics.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA