Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
bioRxiv ; 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38798480

RESUMO

Lymphocytes can circulate as well as take residence within tissues. While the mechanisms by which circulating populations are recruited to infection sites have been extensively characterized, the molecular basis for the recirculation of tissue-resident cells is less understood. Here, we show that helminth infection- or IL-25-induced redistribution of intestinal group 2 innate lymphoid cells (ILC2s) requires access to the lymphatic vessel network. Although the secondary lymphoid structure is an essential signal hub for adaptive lymphocyte differentiation and dispatch, it is redundant for ILC2 migration and effector function. Upon IL-25 stimulation, a dramatic change in epigenetic landscape occurs in intestinal ILC2s, leading to the expression of sphingosine-1-phosphate receptors (S1PRs). Among the various S1PRs, we found that S1PR5 is critical for ILC2 exit from intestinal tissue to lymph. By contrast, S1PR1 plays a dominant role in ILC2 egress from mesenteric lymph nodes to blood circulation and then to distal tissues including the lung where the redistributed ILC2s contribute to tissue repair. The requirement of two S1PRs for ILC2 migration is largely due to the dynamic expression of the tissue-retention marker CD69, which mediates S1PR1 internalization. Thus, our study demonstrates a stage-specific requirement of different S1P receptors for ILC2 redistribution during infection. We therefore propose a fundamental paradigm that innate and adaptive lymphocytes utilize a shared vascular network frame and specialized navigation cues for migration.

2.
Nat Commun ; 15(1): 1718, 2024 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-38409097

RESUMO

Foxo family transcription factors are critically involved in multiple processes, such as metabolism, quiescence, cell survival and cell differentiation. Although continuous, high activity of Foxo transcription factors extends the life span of some species, the involvement of Foxo proteins in mammalian aging remains to be determined. Here, we show that Foxo1 is down-regulated with age in mouse T cells. This down-regulation of Foxo1 in T cells may contribute to the disruption of naive T-cell homeostasis with age, leading to an increase in the number of memory T cells. Foxo1 down-regulation is also associated with the up-regulation of co-inhibitory receptors by memory T cells and exhaustion in aged mice. Using adoptive transfer experiments, we show that the age-dependent down-regulation of Foxo1 in T cells is mediated by T-cell-extrinsic cues, including type 1 interferons. Taken together, our data suggest that type 1 interferon-induced Foxo1 down-regulation is likely to contribute significantly to T-cell dysfunction in aged mice.


Assuntos
Fatores de Transcrição Forkhead , Exaustão das Células T , Camundongos , Animais , Fatores de Transcrição Forkhead/genética , Fatores de Transcrição Forkhead/metabolismo , Regulação para Baixo , Proteína Forkhead Box O1/genética , Proteína Forkhead Box O1/metabolismo , Diferenciação Celular , Proteínas/metabolismo , Interferons/metabolismo , Mamíferos/metabolismo
3.
Nat Immunol ; 24(8): 1256-1264, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37400674

RESUMO

Innate lymphoid cells (ILCs) can quickly switch from a quiescent state to an active state and rapidly produce effector molecules that provide critical early immune protection. How the post-transcriptional machinery processes different stimuli and initiates robust gene expression in ILCs is poorly understood. Here, we show that deletion of the N6-methyladenosine (m6A) writer protein METTL3 has little impact on ILC homeostasis or cytokine-induced ILC1 or ILC3 responses but significantly diminishes ILC2 proliferation, migration and effector cytokine production and results in impaired antihelminth immunity. m6A RNA modification supports an increase in cell size and transcriptional activity in activated ILC2s but not in ILC1s or ILC3s. Among other transcripts, the gene encoding the transcription factor GATA3 is highly m6A methylated in ILC2s. Targeted m6A demethylation destabilizes nascent Gata3 mRNA and abolishes the upregulation of GATA3 and ILC2 activation. Our study suggests a lineage-specific requirement of m6A for ILC2 responses.


Assuntos
Imunidade Inata , Linfócitos , Citocinas/metabolismo , Homeostase , Imunidade Inata/genética , Imunidade Inata/imunologia , Linfócitos/imunologia , RNA/metabolismo , Animais , Camundongos
4.
Nat Commun ; 9(1): 68, 2018 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-29302034

RESUMO

Despite being implicated in non-lymphoid tissues, non-recirculating T cells may also exist in secondary lymphoid organs (SLO). However, a detailed characterization of this lymphoid-resident T cell pool has not yet been done. Here we show that a substantial proportion of CD4 regulatory (Treg) and memory (Tmem) cells establish long-term residence in the SLOs of specific pathogen-free mice. Of these SLOs, only T cell residence within Peyer's patches is affected by microbiota. Resident CD4 Treg and CD4 Tmem cells from lymph nodes and non-lymphoid tissues share many phenotypic and functional characteristics. The percentage of resident T cells in SLOs increases considerably with age, with S1PR1 downregulation possibly contributing to this altered homeostasis. Our results thus show that T cell residence is not only a hallmark of non-lymphoid tissues, but can be extended to secondary lymphoid organs.


Assuntos
Envelhecimento/imunologia , Vida Livre de Germes , Memória Imunológica , Tecido Linfoide/imunologia , Linfócitos T Reguladores , Animais , Feminino , Camundongos Endogâmicos C57BL , Microbiota , Receptores de Lisoesfingolipídeo/metabolismo , Receptores de Esfingosina-1-Fosfato , Linfócitos T Reguladores/metabolismo
5.
Elife ; 62017 12 14.
Artigo em Inglês | MEDLINE | ID: mdl-29239722

RESUMO

Continuous contact with self-major histocompatibility complex ligands is essential for the survival of naive CD4 T cells. We have previously shown that the resulting tonic TCR signaling also influences their fate upon activation by increasing their ability to differentiate into induced/peripheral regulatory T cells. To decipher the molecular mechanisms governing this process, we here focus on the TCR signaling cascade and demonstrate that a rise in intracellular calcium levels is sufficient to modulate the phenotype of mouse naive CD4 T cells and to increase their sensitivity to regulatory T-cell polarization signals, both processes relying on calcineurin activation. Accordingly, in vivo calcineurin inhibition leads the most self-reactive naive CD4 T cells to adopt the phenotype of their less self-reactive cell-counterparts. Collectively, our findings demonstrate that calcium-mediated activation of the calcineurin pathway acts as a rheostat to shape both the phenotype and effector potential of naive CD4 T cells in the steady-state.


Assuntos
Cálcio/metabolismo , Diferenciação Celular , Fenótipo , Linfócitos T Reguladores/fisiologia , Animais , Calcineurina/metabolismo , Células Cultivadas , Camundongos Endogâmicos C57BL , Receptores de Antígenos de Linfócitos T/metabolismo , Transdução de Sinais
6.
J Immunol ; 199(6): 1998-2007, 2017 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-28779024

RESUMO

So far, peripheral T cells have mostly been described to circulate between blood, secondary lymphoid organs (SLOs), and lymph in the steady state. This nomadic existence would allow them to accomplish their surveying task for both foreign Ags and survival signals. Although it is now well established that γδ T cells can be rapidly recruited to inflammatory sites or in certain tumor microenvironments, the trafficking properties of peripheral γδ T cells have been poorly studied in the steady state. In the present study, we highlight the existence of resident γδ T cells in the SLOs of specific pathogen-free mice. Indeed, using several experimental approaches such as the injection of integrin-neutralizing Abs that inhibit the entry of circulating lymphocytes into lymph nodes and long-term parabiosis experiments, we have found that, contrary to Ly-6C-/+CD44lo and Ly-6C+CD44hi γδ T cells, a significant proportion of Ly-6C-CD44hi γδ T cells are trapped for long periods of time within lymph nodes and the spleen in the steady state. Specific in vivo cell depletion strategies have allowed us to demonstrate that macrophages are the main actors involved in this long-term retention of Ly-6C-CD44hi γδ T cells in SLOs.


Assuntos
Linfonodos/imunologia , Macrófagos/imunologia , Baço/imunologia , Subpopulações de Linfócitos T/imunologia , Linfócitos T/imunologia , Animais , Antígenos Ly/metabolismo , Comunicação Celular , Movimento Celular , Células Cultivadas , Receptores de Hialuronatos/metabolismo , Imunidade Inata , Vigilância Imunológica , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Receptores de Antígenos de Linfócitos T gama-delta/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA