Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 50
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
iScience ; 27(2): 108903, 2024 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-38318383

RESUMO

Although the involvement of protein kinase CK2 in cancer is well-documented, there is a need for selective CK2 inhibitors suitable for investigating CK2 specific roles in cancer-related biological pathways and further exploring its therapeutic potential. Here, we report the discovery of AB668, an outstanding selective inhibitor that binds CK2 through a bivalent mode, interacting both at the ATP site and an allosteric αD pocket unique to CK2. Using caspase activation assay, live-cell imaging, and transcriptomic analysis, we have compared the effects of this bivalent inhibitor to representative ATP-competitive inhibitors, CX-4945, and SGC-CK2-1. Our results show that in contrast to CX-4945 or SGC-CK2-1, AB668, by targeting the CK2 αD pocket, has a distinct mechanism of action regarding its anti-cancer activity, inducing apoptotic cell death in several cancer cell lines and stimulating distinct biological pathways in renal cell carcinoma.

2.
ACS Med Chem Lett ; 14(12): 1746-1753, 2023 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-38116405

RESUMO

The transcription factor YAP-TEAD is the downstream effector of the Hippo pathway which controls cell proliferation, apoptosis, tissue repair, and organ growth. Dysregulation of the Hippo pathway has been correlated with carcinogenic processes. A co-crystal structure of TEAD with its endogenous ligand palmitic acid (PA) as well as with flufenamic acid (FA) has been disclosed. Here we report the development of HC-258, which derives from FA and possesses an oxopentyl chain that mimics a molecule of PA as well as an acrylamide that reacts covalently with TEAD's cysteine. HC-258 reduces the CTGF, CYR61, AXL, and NF2 transcript levels and inhibits the migration of MDA-MB-231 breast cancer cells. Co-crystallization with hTEAD2 confirmed that HC-258 binds within TEAD's PA pocket, where it forms a covalent bond with its cysteine.

3.
JHEP Rep ; 5(11): 100876, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37860051

RESUMO

Background & Aims: Mitochondrial permeability transition pore (mPTP) opening is critical for mediating cell death during hepatic ischaemia-reperfusion injury (IRI). Blocking mPTP opening by inhibiting cyclophilin D (CypD) is a promising pharmacological approach for the treatment of IRI. Here, we show that diastereoisomers of a new class of small-molecule cyclophilin inhibitors (SMCypIs) have properties that make them attractive candidates for the development of therapeutic agents against liver IRI. Methods: Derivatives of the parent SMCypI were synthesised and evaluated for their ability to inhibit CypD peptidyl-prolyl cis-trans isomerase (PPIase) activity and for their mitoprotective properties, evaluated by measuring mitochondrial swelling and calcium retention capacity in liver mitochondria. The ability of the selected compounds to inhibit mPTP opening was evaluated in cells subjected to hypoxia/reoxygenation using a calcein/cobalt assay. Their ability to inhibit cell death was evaluated in cells subjected to hypoxia/reoxygenation by measuring lactate dehydrogenase (LDH) release, propidium iodide staining, and cell viability. The compound performing best in vitro was selected for in vivo efficacy evaluation in a mouse model of hepatic IRI. Results: The two compounds that showed the strongest inhibition of CypD PPIase activity and mPTP opening, C105 and C110, were selected. Their SR diastereoisomers carried the activity of the racemic mixture and exhibited mitoprotective properties superior to those of the known macrocyclic cyclophilin inhibitors cyclosporin A and alisporivir. C105SR was more potent than C110SR in inhibiting mPTP opening and prevented cell death in a model of hypoxia/reoxygenation. Finally, C105SR substantially protected against hepatic IRI in vivo by reducing hepatocyte necrosis and apoptosis. Conclusions: We identified a novel cyclophilin inhibitor with strong mitoprotective properties both in vitro and in vivo that represents a promising candidate for cellular protection in hepatic IRI. Impact and Implications: Hepatic ischaemia-reperfusion injury (IRI) is one of the main causes of morbidity and mortality during or after liver surgery. However, no effective therapies are available to prevent or treat this devastating syndrome. An attractive strategy to prevent hepatic IRI aims at reducing cell death by targeting mitochondrial permeability transition pore opening, a phenomenon regulated by cyclophilin D. Here, we identified a new small-molecule cyclophilin inhibitor, and demonstrated the enhanced mitoprotective and hepatoprotective properties of one of its diastereoisomers both in vitro and in vivo, making it an attractive lead compound for subsequent clinical development.

4.
Bioorg Med Chem Lett ; 95: 129488, 2023 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-37770003

RESUMO

The Hippo pathway regulates organ size and tissue homeostasis by controlling cell proliferation and apoptosis. The YAP-TEAD transcription factor, the downstream effector of the Hippo pathway, regulates the expression of genes such as CTGF, Cyr61, Axl and NF2. Aberrant Hippo activity has been identified in multiple types of cancers. Flufenamic acid (FA) was reported to bind in a liphophilic TEAD palmitic acid (PA) pocket, leading to reduction of the expression of Axl and NF2. Here, we show that the replacement of the trifluoromethyl moiety in FA by aromatic groups, directly connected to the scaffold or separated by a linker, leads to compounds with better affinity to TEAD. Co-crystallization studies show that these compounds bind similarly to FA, but deeper within the PA pocket. Our studies identified LM-41 and AF-2112 as two TEAD binders that strongly reduce the expression of CTGF, Cyr61, Axl and NF2. LM-41 gave the strongest reduction of migration of human MDA-MB-231 breast cancer cells.


Assuntos
Ácido Flufenâmico , Neoplasias , Humanos , Ácido Flufenâmico/farmacologia , Fatores de Transcrição/metabolismo , Regulação da Expressão Gênica , Via de Sinalização Hippo , Neoplasias/genética
5.
Int J Mol Sci ; 24(13)2023 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-37446263

RESUMO

The isomerase activity of Cyclophilin A is important for midbody abscission during cell division, however, to date, midbody substrates remain unknown. In this study, we report that the GTP-binding protein Septin 2 interacts with Cyclophilin A. We highlight a dynamic series of Septin 2 phenotypes at the midbody, previously undescribed in human cells. Furthermore, Cyclophilin A depletion or loss of isomerase activity is sufficient to induce phenotypic Septin 2 defects at the midbody. Structural and molecular analysis reveals that Septin 2 proline 259 is important for interaction with Cyclophilin A. Moreover, an isomerisation-deficient EGFP-Septin 2 proline 259 mutant displays defective midbody localisation and undergoes impaired abscission, which is consistent with data from cells with loss of Cyclophilin A expression or activity. Collectively, these data reveal Septin 2 as a novel interacting partner and isomerase substrate of Cyclophilin A at the midbody that is required for abscission during cytokinesis in cancer cells.


Assuntos
Citocinese , Septinas , Humanos , Citocinese/genética , Septinas/genética , Septinas/metabolismo , Ciclofilina A/genética , Ciclofilina A/metabolismo , Divisão Celular , Células HeLa
6.
Expert Opin Drug Discov ; 18(9): 987-1009, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37466331

RESUMO

INTRODUCTION: In fragment-based drug design, fragment linking is a popular strategy where two fragments binding to different sub-pockets of a target are linked together. This attractive method remains challenging especially due to the design of ideal linkers. AREAS COVERED: The authors review the types of linkers and chemical reactions commonly used to the synthesis of linkers, including those utilized in protein-templated fragment self-assembly, where fragments are directly linked in the presence of the protein. Finally, they detail computational workflows and software including generative models that have been developed for fragment linking. EXPERT OPINION: The authors believe that fragment linking offers key advantages for compound design, particularly for the design of bivalent inhibitors linking two distinct pockets of the same or different subunits. On the other hand, more studies are needed to increase the potential of protein-templated approaches in FBDD. Important computational tools such as structure-based de novo software are emerging to select suitable linkers. Fragment linking will undoubtedly benefit from developments in computational approaches and machine learning models.


Assuntos
Desenho de Fármacos , Software , Humanos , Proteínas
7.
J Virol ; 97(4): e0027823, 2023 04 27.
Artigo em Inglês | MEDLINE | ID: mdl-37129415

RESUMO

HIV-1 Tat is a key viral protein that stimulates several steps of viral gene expression. Tat is especially required for the transcription of viral genes. Nevertheless, it is still not clear if and how Tat is incorporated into HIV-1 virions. Cyclophilin A (CypA) is a prolyl isomerase that binds to HIV-1 capsid protein (CA) and is thereby encapsidated at the level of 200 to 250 copies of CypA/virion. Here, we found that a Tat-CypA-CA tripartite complex assembles in HIV-1-infected cells and allows Tat encapsidation into HIV virions (1 Tat/1 CypA). Biochemical and biophysical studies showed that high-affinity interactions drive the assembly of the Tat-CypA-CA complex that could be purified by size exclusion chromatography. We prepared different types of viruses devoid of transcriptionally active Tat. They showed a 5- to 10 fold decrease in HIV infectivity, and conversely, encapsidating Tat into ΔTat viruses greatly enhanced infectivity. The absence of encapsidated Tat decreased the efficiency of reverse transcription by ~50% and transcription by more than 90%. We thus identified a Tat-CypA-CA complex that enables Tat encapsidation and showed that encapsidated Tat is required to initiate robust viral transcription and thus viral production at the beginning of cell infection, before neosynthesized Tat becomes available. IMPORTANCE The viral transactivating protein Tat has been shown to stimulate several steps of HIV gene expression. It was found to facilitate reverse transcription. Moreover, Tat is strictly required for the transcription of viral genes. Although the presence of Tat within HIV virions would undoubtedly favor these steps and therefore enable the incoming virus to boost initial viral production, whether and how Tat is present within virions has been a matter a debate. We here described and characterized a tripartite complex between Tat, HIV capsid protein, and the cellular chaperone cyclophilin A that enables efficient and specific Tat encapsidation within HIV virions. We further showed that Tat encapsidation is required for the virus to efficiently initiate infection and viral production. This effect is mainly due to the transcriptional activity of Tat.


Assuntos
Proteínas do Capsídeo , Ciclofilina A , Infecções por HIV , HIV-1 , Produtos do Gene tat do Vírus da Imunodeficiência Humana , Humanos , Proteínas do Capsídeo/metabolismo , Ciclofilina A/metabolismo , Infecções por HIV/virologia , HIV-1/metabolismo , Produtos do Gene tat do Vírus da Imunodeficiência Humana/genética , Produtos do Gene tat do Vírus da Imunodeficiência Humana/metabolismo , Complexos Multiproteicos/química , Complexos Multiproteicos/isolamento & purificação , Complexos Multiproteicos/metabolismo , Ressonância de Plasmônio de Superfície , Citosol/metabolismo , Linhagem Celular
8.
Int J Mol Sci ; 24(8)2023 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-37108326

RESUMO

Procoagulant platelets are associated with an increased risk for thrombosis. Procoagulant platelet formation is mediated via Cyclophilin D (CypD) mediated opening of the mitochondrial permeability transition pore. Inhibiting CypD activity could therefore be an interesting approach to limiting thrombosis. In this study, we investigated the potential of two novel, non-immunosuppressive, non-peptidic small-molecule cyclophilin inhibitors (SMCypIs) to limit thrombosis in vitro, in comparison with the cyclophilin inhibitor and immunosuppressant Cyclosporin A (CsA). Both cyclophilin inhibitors significantly decreased procoagulant platelet formation upon dual-agonist stimulation, shown by a decreased phosphatidylserine (PS) exposure, as well as a reduction in the loss of mitochondrial membrane potential. Furthermore, the SMCypIs potently reduced procoagulant platelet-dependent clotting time, as well as fibrin formation under flow, comparable to CsA. No effect was observed on agonist-induced platelet activation measured by P-selectin expression, as well as CypA-mediated integrin αIIbß3 activation. Importantly, whereas CsA increased Adenosine 5'-diphosphate (ADP)-induced platelet aggregation, this was unaffected in the presence of the SMCypIs. We here demonstrate specific cyclophilin inhibition does not affect normal platelet function, while a clear reduction in procoagulant platelets is observed. Reducing platelet procoagulant activity by inhibiting cyclophilins with SMCypIs forms a promising strategy to limit thrombosis.


Assuntos
Ciclofilinas , Trombose , Camundongos , Animais , Humanos , Ciclofilinas/metabolismo , Camundongos Knockout , Plaquetas/metabolismo , Ativação Plaquetária , Trombose/metabolismo , Complexo Glicoproteico GPIIb-IIIa de Plaquetas/metabolismo
9.
J Med Chem ; 65(8): 5926-5940, 2022 04 28.
Artigo em Inglês | MEDLINE | ID: mdl-35389210

RESUMO

The Hippo signaling pathway plays a fundamental role in the control of organ growth, cell proliferation, and stem cell characters. TEADs are the main transcriptional output regulators of the Hippo signaling pathway and bind to YAP and TAZ co-activators. TEAD1-4 are expressed differently, depending on the tissue and developmental level, and can be overexpressed in certain pathologies. TEAD ligands mainly target the internal pocket of the C-terminal domain of TEAD, and the first ligands selective for TEAD1 and TEAD3 have been recently reported. In this paper, we focus on the topographic homology of the TEAD C-terminal domain both externally and in the internal pocket to highlight the possibility of rationally designing ligands selective for one of the TEAD family members. We identified a novel TEAD2-specific pocket and reported its first ligand. Finally, AlphaFold2 models of full-length TEADs suggest TEAD autoregulation and emphasize the importance of the interface 2.


Assuntos
Via de Sinalização Hippo , Fatores de Transcrição , Proliferação de Células , Ligantes , Fatores de Transcrição/metabolismo
10.
Int J Mol Sci ; 23(6)2022 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-35328672

RESUMO

Toxoplasmosis is a highly prevalent human disease, and virulent strains of this parasite emerge from wild biotopes. Here, we report on the potential of a histone deacetylase (HDAC) inhibitor we previously synthesized, named JF363, to act in vitro against a large panel of Toxoplasma strains, as well as against the liver and blood stages of Plasmodium parasites, the causative agents of malaria. In vivo administration of the drug significantly increases the survival of mice during the acute phase of infection by T. gondii, thus delaying its spreading. We further provide evidence of the compound's efficiency in controlling the formation of cysts in the brain of T. gondii-infected mice. A convincing docking of the JF363 compound in the active site of the five annotated ME49 T. gondii HDACs was performed by extensive sequence-structure comparison modeling. The resulting complexes show a similar mode of binding in the five paralogous structures and a quite similar prediction of affinities in the micromolar range. Altogether, these results pave the way for further development of this compound to treat acute and chronic toxoplasmosis. It also shows promise for the future development of anti-Plasmodium therapeutic interventions.


Assuntos
Parasitos , Plasmodium , Toxoplasma , Toxoplasmose , Animais , Inibidores de Histona Desacetilases/farmacologia , Inibidores de Histona Desacetilases/uso terapêutico , Histona Desacetilases , Camundongos , Toxoplasmose/tratamento farmacológico
11.
Eur J Med Chem ; 226: 113835, 2021 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-34509860

RESUMO

The Hippo pathway is involved in organ size control and tissue homeostasis by regulating cell growth, proliferation and apoptosis. It controls the phosphorylation of the transcription co-activator YAP (Yes associated protein) and TAZ (Transcriptional coactivator with PDZ-binding motif) in order to control their nuclear import and their interaction with TEAD (Transcriptional Enhanced Associated Domain). YAP, TAZ and TEADs are dysregulated in several cancers making YAP/TAZ-TEAD interaction a new emerging anti-cancer target. We report the synthesis of a set of trisubstituted pyrazoles which bind to hTEAD2 at the interface 2 revealing for the first time a cryptic pocket created by the movement of the phenol ring of Y382. Compound 6 disrupts YAP/TAZ-TEAD interaction in HEK293T cells and inhibits TEAD target genes and cell proliferation in MDA-MB-231 cells. Compound 6 is therefore the first inhibitor of YAP/TAZ-TEAD targeting interface 2. This molecule could serve with other pan-TEAD inhibitors such as interface 3 ligands, for the delineation of the relative importance of VGLL vs YAP/TAZ in a given cellular model.


Assuntos
Antineoplásicos/farmacologia , Proteínas de Ciclo Celular/antagonistas & inibidores , Descoberta de Drogas , Pirazóis/farmacologia , Fatores de Transcrição de Domínio TEA/antagonistas & inibidores , Fatores de Transcrição/antagonistas & inibidores , Proteínas com Motivo de Ligação a PDZ com Coativador Transcricional/antagonistas & inibidores , Antineoplásicos/síntese química , Antineoplásicos/química , Proteínas de Ciclo Celular/metabolismo , Proliferação de Células/efeitos dos fármacos , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Células HEK293 , Humanos , Ligantes , Modelos Moleculares , Estrutura Molecular , Pirazóis/síntese química , Pirazóis/química , Relação Estrutura-Atividade , Fatores de Transcrição de Domínio TEA/metabolismo , Fatores de Transcrição/metabolismo , Proteínas com Motivo de Ligação a PDZ com Coativador Transcricional/metabolismo
12.
ChemMedChem ; 16(18): 2823-2844, 2021 09 16.
Artigo em Inglês | MEDLINE | ID: mdl-34032019

RESUMO

Starting from our previously reported hit, a series of 1,5-diaryl-1,2,3-triazole-4-carbohydrazones were synthesized and evaluated as inhibitors of the YAP/TAZ-TEAD complex. Their binding to hTEAD2 was confirmed by nanodifferential scanning fluorimetry, and some of the compounds were also found to moderately disrupt the YAP-TEAD interaction, as assessed by a fluorescence polarization assay. A TEAD luciferase gene reporter assay performed in HEK293T cells and RTqPCR measurements in MDA-MB231 cells showed that these compounds inhibit YAP/TAZ-TEAD activity to cells in the micromolar range. In spite of the cytotoxic effects displayed by some of the compounds of this series, they are still good starting points and can be suitably modified into an effective and viable YAP-TEAD disruptor in the future.


Assuntos
Antineoplásicos/farmacologia , Hidrazonas/farmacologia , Fatores de Transcrição de Domínio TEA/antagonistas & inibidores , Proteínas com Motivo de Ligação a PDZ com Coativador Transcricional/antagonistas & inibidores , Triazóis/farmacologia , Proteínas de Sinalização YAP/antagonistas & inibidores , Antineoplásicos/síntese química , Antineoplásicos/química , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Relação Dose-Resposta a Droga , Desenho de Fármacos , Ensaios de Seleção de Medicamentos Antitumorais , Células HEK293 , Humanos , Hidrazonas/síntese química , Hidrazonas/química , Estrutura Molecular , Relação Estrutura-Atividade , Fatores de Transcrição de Domínio TEA/metabolismo , Proteínas com Motivo de Ligação a PDZ com Coativador Transcricional/metabolismo , Triazóis/síntese química , Triazóis/química , Proteínas de Sinalização YAP/metabolismo
13.
J Pharmacol Exp Ther ; 376(3): 348-357, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33303698

RESUMO

Mitochondrial permeability transition pore (mPTP) opening is a key event in cell death during myocardial ischemia reperfusion. Inhibition of its modulator cyclophilin D (CypD) by cyclosporine A (CsA) reduces ischemia-reperfusion injury. The use of cyclosporine A in this indication is debated; however, targeting mPTP remains a major goal to achieve. We investigated the protective effects of a new original small-molecule cyclophilin inhibitor C31, which was specifically designed to target CypD. CypD peptidylprolyl cis-trans isomerase (PPIase) activity was assessed by the standard chemotrypsin-coupled assay. The effects of C31 on mPTP opening were investigated in isolated mouse cardiac mitochondria by measuring mitochondrial swelling and calcium retention capacity (CRC) in rat H9C2 cardiomyoblasts and in adult mouse cardiomyocytes by fluorescence microscopy in isolated perfused mouse hearts and ex vivo after drug infusion in mice. C31 potently inhibited CypD PPIase activity and mitochondrial swelling. C31 was more effective at increasing mitochondrial CRC than CsA and was still able to increase CRC in Ppif -/- (CypD-inactivated) cardiac mitochondria. C31 delayed both mPTP opening and cell death in cardiomyocytes subjected to hypoxia reoxygenation. However, high concentrations of both drugs were necessary to reduce mPTP opening in isolated perfused hearts, and neither CsA nor C31 inhibited mPTP opening in heart after in vivo infusion, underlying the importance of myocardial drug distribution for cardioprotection. C31 is an original inhibitor of mPTP opening involving both CypD-dependent and -independent mechanisms. It constitutes a promising new cytoprotective agent. Optimization of its pharmacokinetic properties is now required prior to its use against cardiac ischemia-reperfusion injury. SIGNIFICANCE STATEMENT: This study demonstrates that the new cyclophilin inhibitor C31 potently inhibits cardiac mitochondrial permeability transition pore (mPTP) opening in vitro and ex vivo. The dual mechanism of action of C31 allows the prevention of mPTP opening beyond cyclophilin D inhibition. Further development of the compound might bring promising drug candidates for cardioprotection. However, the lack of effect of both C31 and cyclosporine A after systemic administration demonstrates the difficulties of targeting myocardial mitochondria in vivo and should be taken into account in cardioprotective strategies.


Assuntos
Coração/efeitos dos fármacos , Poro de Transição de Permeabilidade Mitocondrial/antagonistas & inibidores , Miocárdio/metabolismo , Pirrolidinas/química , Pirrolidinas/farmacologia , Animais , Transporte Biológico , Citosol/efeitos dos fármacos , Citosol/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Mitocôndrias Cardíacas/efeitos dos fármacos , Mitocôndrias Cardíacas/metabolismo , Miocárdio/citologia , Pirrolidinas/metabolismo
14.
Eur J Med Chem ; 212: 113031, 2021 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-33309473

RESUMO

The malignant transformation of melanocytes causes several thousand deaths each year, making melanoma an important public health concern. Melanoma is the most aggressive skin cancer, which incidence has regularly increased over the past decades. We described here the preparation of new compounds based on the 1-(3,4-dihydroxyphenyl)imidazo[1,2-a]quinoxaline structure. Different positions of the quinoxaline moiety were screened to introduce novel substituents in order to study their influence on the biological activity. Several alkylamino or alkyloxy groups were also considered to replace the methylamine of our first generation of Imiqualines. Imidazo[1,2-a]pyrazine derivatives were also designed as potential minimal structure. The investigation on A375 melanoma cells displayed interesting in vitro low nanomolar cytotoxic activity. Among them, 9d (EAPB02303) is particularly remarkable since it is 20 times more potent than vemurafenib, the reference clinical therapy used on BRAF mutant melanoma. Contrary to the first generation, EAPB02303 does not inhibit tubulin polymerization, as confirmed by an in vitro assay and a molecular modelisation study. The mechanism of action for EAPB02303 highlighted by a transcriptomic analysis is clearly different from a panel of 12 well-known anticancer drugs. In vivoEAPB02303 treatment reduced tumor size and weight of the A375 human melanoma xenografts in a dose-dependent manner, correlated with a low mitotic index but not with necrosis.


Assuntos
Antineoplásicos/farmacologia , Melanoma Experimental/tratamento farmacológico , Quinoxalinas/farmacologia , Moduladores de Tubulina/farmacologia , Animais , Antineoplásicos/síntese química , Antineoplásicos/química , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Melanoma Experimental/patologia , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Simulação de Acoplamento Molecular , Estrutura Molecular , Polimerização/efeitos dos fármacos , Quinoxalinas/síntese química , Quinoxalinas/química , Relação Estrutura-Atividade , Tubulina (Proteína)/metabolismo , Moduladores de Tubulina/síntese química , Moduladores de Tubulina/química , Células Tumorais Cultivadas
15.
Clin Cancer Res ; 26(23): 6242-6253, 2020 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-32859654

RESUMO

PURPOSE: The limited knowledge on the molecular profile of patients with BRAF-mutant non-small cell lung cancer (NSCLC) who progress under BRAF-targeted therapies (BRAF-TT) has hampered the development of subsequent therapeutic strategies for these patients. Here, we evaluated the clinical utility of circulating tumor DNA (ctDNA)-targeted sequencing to identify canonical BRAF mutations and genomic alterations potentially related to resistance to BRAF-TT, in a large cohort of patients with BRAF-mutant NSCLC. EXPERIMENTAL DESIGN: This was a prospective study of 78 patients with advanced BRAF-mutant NSCLC, enrolled in 27 centers across France. Blood samples (n = 208) were collected from BRAF-TT-naïve patients (n = 47), patients nonprogressive under treatment (n = 115), or patients at disease progression (PD) to BRAF-TT (24/46 on BRAF monotherapy and 22/46 on BRAF/MEK combination therapy). ctDNA sequencing was performed using InVisionFirst-Lung. In silico structural modeling was used to predict the potential functional effect of the alterations found in ctDNA. RESULTS: BRAFV600E ctDNA was detected in 74% of BRAF-TT-naïve patients, where alterations in genes related with the MAPK and PI3K pathways, signal transducers, and protein kinases were identified in 29% of the samples. ctDNA positivity at the first radiographic evaluation under treatment, as well as BRAF-mutant ctDNA positivity at PD were associated with poor survival. Potential drivers of resistance to either BRAF-TT monotherapy or BRAF/MEK combination were identified in 46% of patients and these included activating mutations in effectors of the MAPK and PI3K pathways, as well as alterations in U2AF1, IDH1, and CTNNB1. CONCLUSIONS: ctDNA sequencing is clinically relevant for the detection of BRAF-activating mutations and the identification of alterations potentially related to resistance to BRAF-TT in BRAF-mutant NSCLC.


Assuntos
Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , DNA Tumoral Circulante/genética , Resistencia a Medicamentos Antineoplásicos , Terapia de Alvo Molecular/métodos , Mutação , Inibidores de Proteínas Quinases/farmacologia , Proteínas Proto-Oncogênicas B-raf/genética , Biomarcadores Tumorais/genética , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/secundário , DNA Tumoral Circulante/análise , Seguimentos , Genômica/métodos , Humanos , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Prognóstico , Estudos Prospectivos , Taxa de Sobrevida
16.
J Med Chem ; 63(20): 11420-11435, 2020 10 22.
Artigo em Inglês | MEDLINE | ID: mdl-32539387

RESUMO

Fragment-based drug discovery is a strategy widely used in both academia and pharmaceutical companies to generate small-molecule protein inhibitors and drug candidates. Among the approaches reported in the literature (growing, linking, and merging), the linking approach theoretically offers the opportunity to rapidly gain in binding energy. Nevertheless, this approach is poorly represented when considering the compounds currently in clinical trials. Here, we report an exhaustive view of the cases published so far in the literature, together with the methods used to identify the two initial fragments either simultaneously or successively. We review the different types of linkers published and discuss how these linkers are designed to obtain the lead compound. Mixing merging and linking methods, where the linker is duplicated from a known inhibitor, appears as an interesting strategy. To reach superadditivity, we propose to grow one of the fragments in order to minimize the distance between the two binders and then link the resulting compounds using flexible alkyl-derived linkers.


Assuntos
Desenho de Fármacos , Preparações Farmacêuticas/química , Proteínas/antagonistas & inibidores , Bibliotecas de Moléculas Pequenas , Sítios de Ligação , Ensaios Clínicos como Assunto , Aprovação de Drogas , Ligantes , Estrutura Molecular , Ressonância Magnética Nuclear Biomolecular , Ligação Proteica , Bibliotecas de Moléculas Pequenas/química , Bibliotecas de Moléculas Pequenas/farmacologia , Relação Estrutura-Atividade
17.
Br J Pharmacol ; 176(20): 4065-4078, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31378934

RESUMO

BACKGROUND AND PURPOSE: The pharmacology of polyphenol metabolites on beta-cell function is largely undetermined. We sought to identify polyphenol metabolites that enhance the insulin-secreting function of beta-cells and to explore the underlying mechanisms. EXPERIMENTAL APPROACH: INS-1 beta-cells and rat isolated islets of Langerhans or perfused pancreas preparations were used for insulin secretion experiments. Molecular modelling, intracellular Ca2+ monitoring, and whole-cell patch-clamp recordings were used for mechanistic studies. KEY RESULTS: Among a set of polyphenol metabolites, we found that exposure of INS-1 beta-cells to urolithins A and C enhanced glucose-stimulated insulin secretion. We further characterized the activity of urolithin C and its pharmacological mechanism. Urolithin C glucose-dependently enhanced insulin secretion in isolated islets of Langerhans and perfused pancreas preparations. In the latter, enhancement was reversible when glucose was lowered from a stimulating to a non-stimulating concentration. Molecular modelling suggested that urolithin C could dock into the Cav 1.2 L-type Ca2+ channel. Calcium monitoring indicated that urolithin C had no effect on basal intracellular Ca2+ but enhanced depolarization-induced increase in intracellular Ca2+ in INS-1 cells and dispersed cells isolated from islets. Electrophysiology studies indicated that urolithin C dose-dependently enhanced the L-type Ca2+ current for levels of depolarization above threshold and shifted its voltage-dependent activation towards more negative potentials in INS-1 cells. CONCLUSION AND IMPLICATIONS: Urolithin C is a glucose-dependent activator of insulin secretion acting by facilitating L-type Ca2+ channel opening and Ca2+ influx into pancreatic beta-cells. Our work paves the way for the design of polyphenol metabolite-inspired compounds aimed at ameliorating beta-cell function.


Assuntos
Canais de Cálcio Tipo L/metabolismo , Glucose/metabolismo , Taninos Hidrolisáveis/metabolismo , Insulina/metabolismo , Animais , Linhagem Celular , Ilhotas Pancreáticas/metabolismo , Masculino , Ratos , Ratos Wistar
18.
Gastroenterology ; 157(5): 1368-1382, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31336123

RESUMO

BACKGROUND & AIMS: Hepatic ischemia/reperfusion injury is a complication of liver surgery that involves mitochondrial dysfunction resulting from mitochondrial permeability transition pore (mPTP) opening. Cyclophilin D (PPIF or CypD) is a peptidyl-prolyl cis-trans isomerase that regulates mPTP opening in the inner mitochondrial membrane. We investigated whether and how recently created small-molecule inhibitors of CypD prevent opening of the mPTP in hepatocytes and the resulting effects in cell models and livers of mice undergoing ischemia/reperfusion injury. METHODS: We measured the activity of 9 small-molecule inhibitors of cyclophilins in an assay of CypD activity. The effects of the small-molecule CypD inhibitors or vehicle on mPTP opening were assessed by measuring mitochondrial swelling and calcium retention in isolated liver mitochondria from C57BL/6J (wild-type) and Ppif-/- (CypD knockout) mice and in primary mouse and human hepatocytes by fluorescence microscopy. We induced ischemia/reperfusion injury in livers of mice given a small-molecule CypD inhibitor or vehicle before and during reperfusion and collected samples of blood and liver for histologic analysis. RESULTS: The compounds inhibited peptidyl-prolyl isomerase activity (half maximal inhibitory concentration values, 0.2-16.2 µmol/L) and, as a result, calcium-induced mitochondrial swelling, by preventing mPTP opening (half maximal inhibitory concentration values, 1.4-132 µmol/L) in a concentration-dependent manner. The most potent inhibitor (C31) bound CypD with high affinity and inhibited swelling in mitochondria from livers of wild-type and Ppif-/- mice (indicating an additional, CypD-independent effect on mPTP opening) and in primary human and mouse hepatocytes. Administration of C31 in mice with ischemia/reperfusion injury before and during reperfusion restored hepatic calcium retention capacity and oxidative phosphorylation parameters and reduced liver damage compared with vehicle. CONCLUSIONS: Recently created small-molecule inhibitors of CypD reduced calcium-induced swelling in mitochondria from mouse and human liver tissues. Administration of these compounds to mice during ischemia/reperfusion restored hepatic calcium retention capacity and oxidative phosphorylation parameters and reduced liver damage. These compounds might be developed to protect patients from ischemia/reperfusion injury after liver surgery or for other hepatic or nonhepatic disorders related to abnormal mPTP opening.


Assuntos
Inibidores Enzimáticos/farmacologia , Hepatopatias/prevenção & controle , Fígado/efeitos dos fármacos , Mitocôndrias Hepáticas/efeitos dos fármacos , Proteínas de Transporte da Membrana Mitocondrial/antagonistas & inibidores , Peptidil-Prolil Isomerase F/antagonistas & inibidores , Traumatismo por Reperfusão/prevenção & controle , Animais , Sinalização do Cálcio/efeitos dos fármacos , Células Cultivadas , Peptidil-Prolil Isomerase F/genética , Peptidil-Prolil Isomerase F/metabolismo , Citoproteção , Modelos Animais de Doenças , Humanos , Fígado/enzimologia , Fígado/patologia , Hepatopatias/enzimologia , Hepatopatias/genética , Hepatopatias/patologia , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Mitocôndrias Hepáticas/enzimologia , Mitocôndrias Hepáticas/patologia , Proteínas de Transporte da Membrana Mitocondrial/metabolismo , Poro de Transição de Permeabilidade Mitocondrial , Dilatação Mitocondrial/efeitos dos fármacos , Traumatismo por Reperfusão/enzimologia , Traumatismo por Reperfusão/genética , Traumatismo por Reperfusão/patologia , Transdução de Sinais
19.
J Med Chem ; 62(15): 7015-7031, 2019 08 08.
Artigo em Inglês | MEDLINE | ID: mdl-31283223

RESUMO

The Toll-like receptors (TLRs) 7 and 8 play an important role in the immune system activation, and their agonists may therefore serve as promising candidate vaccine adjuvants. However, the chronic immune activation by excessive TLR stimulation is a hallmark of several clinically important infectious and autoimmune diseases, which warrants the search for TLR antagonists. In this study, we have synthesized and characterized a variety of compounds belonging to three heterocyclic chemical series: imidazo[1,2-a]pyrazine, imidazo[1,5-a]quinoxaline, and pyrazolo[1,5-a]quinoxaline. These compounds have been tested for their TLR7 or TLR8 agonistic and antagonistic activities. Several of them are shown to be selective TLR7 antagonists without any TLR7 or TLR8 agonistic activity. The selectivity was confirmed by a comparative ligand-docking study in TLR7 antagonist pocket. Two compounds of the pyrazolo[1,5-a]quinoxaline series (10a and 10b) are potent selective TLR7 antagonists and may be considered as promising starting points for the development of new therapeutic agents.


Assuntos
Imidazóis/química , Pirazinas/química , Quinoxalinas/química , Receptor 7 Toll-Like/antagonistas & inibidores , Receptor 7 Toll-Like/química , Linhagem Celular , Relação Dose-Resposta a Droga , Humanos , Imidazóis/farmacologia , Estrutura Secundária de Proteína , Pirazinas/farmacologia , Quinoxalinas/farmacologia
20.
Int J Mol Sci ; 20(12)2019 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-31216674

RESUMO

We previously synthesized an hydroxamate derivative (N-hydroxy-4-[2-(3- methoxyphenyl)acetamido]benzamide) named 363 with potent anti-Toxoplasma gondii activity and histone deacetylase inhibitor (HDACi) effects. Here we show that 1-N-hydroxy-4-N- [(2-methoxyphenyl)methyl]benzene-1,4-dicarboxamide, a 363 isomer, does not have antiparasitic potency and has a 13-fold decrease in HDACi activity. The in silico modeling of T. gondii HDACs of the type II strain discloses identity varying from 25% to 62% on more than 250 residues for S8EP32_TOXG and A0A125YPH4_TOXGM. We observed a high conservation degree with the human HDAC2 (53% and 64% identity, respectively) and a moderate one with the human HDAC8 (30-40%). Two other TgHDACs, S8F6L4_TOXGM and S8GEI3_TOXGM, were identified as displaying a higher similarity with some bacterial orthologs (~35%) than with the human enzymes (~25%). The docking in parallel of the two compounds on the models generated allowed us to gain insights on the docking of these hydroxamate derivatives that guide their specificity and potency against T. gondii histone deacetylase. This information would constitute the rationale from which more specific derivatives can be synthetized.


Assuntos
Antiparasitários/química , Antiparasitários/farmacologia , Inibidores de Histona Desacetilases/química , Inibidores de Histona Desacetilases/farmacologia , Sítios de Ligação , Linhagem Celular Tumoral , Relação Dose-Resposta a Droga , Histona Desacetilases/química , Humanos , Ligantes , Conformação Molecular , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Estrutura Molecular , Testes de Sensibilidade Parasitária , Ligação Proteica , Relação Estrutura-Atividade , Toxoplasma/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA