Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Am J Physiol Heart Circ Physiol ; 313(4): H732-H743, 2017 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-28667054

RESUMO

The actions of hydrogen sulfide (H2S) on the heart and vasculature have been extensively reported. However, the mechanisms underlying the effects of H2S are unclear in the anesthetized rat. The objective of the present study was to investigate the effect of H2S on the electrocardiogram and examine the relationship between H2S-induced changes in heart rate (HR), mean arterial pressure (MAP), and respiratory function. Intravenous administration of the H2S donor Na2S in the anesthetized Sprague-Dawley rat decreased MAP and HR and produced changes in respiratory function. The administration of Na2S significantly increased the RR interval at some doses but had no effect on PR or corrected QT(n)-B intervals. In experiments where respiration was maintained with a mechanical ventilator, we observed that Na2S-induced decreases in MAP and HR were independent of respiration. In experiments where respiration was maintained by mechanical ventilation and HR was maintained by cardiac pacing, Na2S-induced changes in MAP were not significantly altered, whereas changes in HR were abolished. Coadministration of glybenclamide significantly increased MAP and HR responses at some doses, but methylene blue, diltiazem, and ivabradine had no significant effect compared with control. The decreases in MAP and HR in response to Na2S could be dissociated and were independent of changes in respiratory function, ATP-sensitive K+ channels, methylene blue-sensitive mechanism involving L-type voltage-sensitive Ca2+ channels, or hyperpolarization-activated cyclic nucleotide-gated channels. Cardiovascular responses observed in spontaneously hypertensive rats were more robust than those in Sprague-Dawley rats.NEW & NOTEWORTHY H2S is a gasotransmitter capable of producing a decrease in mean arterial pressure and heart rate. The hypotensive and bradycardic effects of H2S can be dissociated, as shown with cardiac pacing experiments. Responses were not blocked by diltiazem, ivabradine, methylene blue, or glybenclamide.


Assuntos
Pressão Arterial/efeitos dos fármacos , Frequência Cardíaca/efeitos dos fármacos , Sulfeto de Hidrogênio/farmacologia , Sulfetos/farmacologia , Animais , Canais de Cálcio Tipo L/efeitos dos fármacos , Estimulação Cardíaca Artificial , Eletrocardiografia/efeitos dos fármacos , Glibureto/farmacologia , Hipoglicemiantes/farmacologia , Canais KATP/efeitos dos fármacos , Masculino , Bloqueadores dos Canais de Potássio/farmacologia , Ratos , Ratos Endogâmicos SHR , Ratos Sprague-Dawley , Respiração Artificial
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA