Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
2.
Angew Chem Weinheim Bergstr Ger ; 128(5): 1824-1828, 2016 01 26.
Artigo em Inglês | MEDLINE | ID: mdl-27478279

RESUMO

Linear poly(p-phenylene)s are modestly active UV photocatalysts for hydrogen production in the presence of a sacrificial electron donor. Introduction of planarized fluorene, carbazole, dibenzo[b,d]thiophene or dibenzo[b,d]thiophene sulfone units greatly enhances the H2 evolution rate. The most active dibenzo[b,d]thiophene sulfone co-polymer has a UV photocatalytic activity that rivals TiO2, but is much more active under visible light. The dibenzo[b,d]thiophene sulfone co-polymer has an apparent quantum yield of 2.3 % at 420 nm, as compared to 0.1 % for platinized commercial pristine carbon nitride.

3.
J Phys Condens Matter ; 28(7): 074001, 2016 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-26808228

RESUMO

In this mini-review, we discuss what insight computational modelling can provide into the working of photocatalysts for solar fuel synthesis and how calculations can be used to screen for new promising materials for photocatalytic water splitting and carbon dioxide reduction. We will extensively discuss the different relevant (material) properties and the computational approaches (DFT, TD-DFT, GW/BSE) available to model them. We illustrate this with examples from the literature, focussing on polymeric and nanoparticle photocatalysts. We finish with a perspective on the outstanding conceptual and computational challenges.

4.
Angew Chem Int Ed Engl ; 55(5): 1792-6, 2016 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-26696450

RESUMO

Linear poly(p-phenylene)s are modestly active UV photocatalysts for hydrogen production in the presence of a sacrificial electron donor. Introduction of planarized fluorene, carbazole, dibenzo[b,d]thiophene or dibenzo[b,d]thiophene sulfone units greatly enhances the H2 evolution rate. The most active dibenzo[b,d]thiophene sulfone co-polymer has a UV photocatalytic activity that rivals TiO2, but is much more active under visible light. The dibenzo[b,d]thiophene sulfone co-polymer has an apparent quantum yield of 2.3 % at 420 nm, as compared to 0.1 % for platinized commercial pristine carbon nitride.

5.
Phys Chem Chem Phys ; 17(27): 17854-63, 2015 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-26089285

RESUMO

We use a combination of Time-Dependent Density Functional Theory (TD-DFT) and approximate Coupled Cluster Theory (RI-CC2) to compare trends in the optical gap and fluorescence energies of ortho-, meta- and para-oligomers of phenylene. We find that RI-CC2 and TD-DFT calculations using three different commonly employed XC-potentials (B3LYP, BHLYP and CAM-B3LYP) generally give consistent predictions. Most importantly, the fluorescence energy of m-phenylene is predicted to be independent of oligomer length, the fluorescence energy of p-phenylene to decrease with oligomer length and that of o-phenylene to increase. The origins of these differences in behaviour between the different isomers are analysed and found to stem from a subtle combination of steric and electronic factors.

6.
J Am Chem Soc ; 137(9): 3265-70, 2015 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-25643993

RESUMO

Photocatalytic hydrogen production from water offers an abundant, clean fuel source, but it is challenging to produce photocatalysts that use the solar spectrum effectively. Many hydrogen-evolving photocatalysts are active in the ultraviolet range, but ultraviolet light accounts for only 3% of the energy available in the solar spectrum at ground level. Solid-state crystalline photocatalysts have light absorption profiles that are a discrete function of their crystalline phase and that are not always tunable. Here, we prepare a series of amorphous, microporous organic polymers with exquisite synthetic control over the optical gap in the range 1.94-2.95 eV. Specific monomer compositions give polymers that are robust and effective photocatalysts for the evolution of hydrogen from water in the presence of a sacrificial electron donor, without the apparent need for an added metal cocatalyst. Remarkably, unlike other organic systems, the best performing polymer is only photoactive under visible rather than ultraviolet irradiation.

7.
J Colloid Interface Sci ; 408: 87-93, 2013 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-23916158

RESUMO

This study deals with the ionically-driven self-assembly of oligomeric aminosilicones, judiciously protonated with a variety of organic acids. Depending on the length of the silicone and the strength of the associated acids, (inverse) water-in-silicone emulsions, small nanoparticles, or catanionic vesicles were prepared and characterized by conventional (TEM) or original (DIC optical microscopy, DOSY NMR) techniques. For chains longer than about 40 units, a specific PEG-based sulfonic acid was synthesized and used to generate a supramolecular block-like copolymer and ensure fast and efficient emulsification. In all instances, a simple impulse such as pH increase triggered phase separation of the colloidal objects.


Assuntos
Silicones/química , Água/química , Espectroscopia de Ressonância Magnética , Microscopia Eletrônica de Transmissão , Prótons
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA