Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Phys Rev Lett ; 116(10): 103001, 2016 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-27015477

RESUMO

We have studied, for the first time by electron spectroscopy, the Auger decay of the 4d→nf (n=4,5) resonances in Xe^{5+} ion. By detecting in coincidence the Auger electrons with the resulting Xe^{6+} ions, we unravel the contribution of the different final ionic states to the total cross section measured by ion spectroscopy. A strong intensity of 5s5p satellite lines has been observed, up to 4 times stronger than the 5s^{2} main lines. This unexpected behavior is confirmed by multiconfiguration Dirac-Fock calculations. This technique provides the most stringent test for theoretical models and allows us to disentangle the contribution of ions in the ground and metastable states in the target beam.

2.
Opt Lett ; 36(5): 678-80, 2011 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-21368946

RESUMO

We report on a nested-cavity, doubly resonant optical parametric oscillator (NesCOPO) architecture for widely tunable, mid-IR, single-frequency generation. By use of an achromatic phase-adapted double-pass pumping scheme, this new, low-threshold, semimonolithic architecture only requires two free-standing cavity mirrors and a nonlinear crystal with a mirror coating deposited on its input facet while the other facet is antireflection coated. It is thus as simple and compact as any basic linear optical parametric oscillator cavity, is easily tunable, and displays low sensitivity to mechanical vibrations. Using a high-repetition-rate (4.8 kHz) microlaser as the pump source of the NesCOPO, we demonstrate a compact source that provides pulsed, stable single-frequency output over a wide spectral range (3.8-4.3 µm) with a high peak power (up to 50 W), which are properties well suited for practical gas sensing applications.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA