Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Adv Exp Med Biol ; 1267: 45-58, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32894476

RESUMO

In this chapter, we will focus on ParABS: an apparently simple, three-component system, required for the segregation of bacterial chromosomes and plasmids. We will specifically describe how biophysical measurements combined with physical modeling advanced our understanding of the mechanism of ParABS-mediated complex assembly, segregation and positioning.


Assuntos
Proteínas de Bactérias/metabolismo , Segregação de Cromossomos , Cromossomos Bacterianos/metabolismo , Posicionamento Cromossômico , DNA Bacteriano/metabolismo , Plasmídeos/metabolismo
2.
Mol Cell ; 79(2): 293-303.e4, 2020 07 16.
Artigo em Inglês | MEDLINE | ID: mdl-32679076

RESUMO

Liquid-liquid phase-separated (LLPS) states are key to compartmentalizing components in the absence of membranes; however, it is unclear whether LLPS condensates are actively and specifically organized in the subcellular space and by which mechanisms. Here, we address this question by focusing on the ParABS DNA segregation system, composed of a centromeric-like sequence (parS), a DNA-binding protein (ParB), and a motor (ParA). We show that parS and ParB associate to form nanometer-sized, round condensates. ParB molecules diffuse rapidly within the nucleoid volume but display confined motions when trapped inside ParB condensates. Single ParB molecules are able to rapidly diffuse between different condensates, and nucleation is strongly favored by parS. Notably, the ParA motor is required to prevent the fusion of ParB condensates. These results describe a novel active mechanism that splits, segregates, and localizes non-canonical LLPS condensates in the subcellular space.


Assuntos
Trifosfato de Adenosina/fisiologia , Fenômenos Fisiológicos Bacterianos , Proteínas de Escherichia coli/fisiologia , Transição de Fase , DNA Primase/fisiologia , DNA Bacteriano , Microscopia/métodos , Nanopartículas , Imagem Individual de Molécula/métodos
3.
Nat Commun ; 7: 12107, 2016 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-27377966

RESUMO

Precise and rapid DNA segregation is required for proper inheritance of genetic material. In most bacteria and archaea, this process is assured by a broadly conserved mitotic-like apparatus in which a NTPase (ParA) displaces the partition complex. Competing observations and models imply starkly different 3D localization patterns of the components of the partition machinery during segregation. Here we use super-resolution microscopies to localize in 3D each component of the segregation apparatus with respect to the bacterial chromosome. We show that Par proteins locate within the nucleoid volume and reveal that proper volumetric localization and segregation of partition complexes requires ATPase and DNA-binding activities of ParA. Finally, we find that the localization patterns of the different components of the partition system highly correlate with dense chromosomal regions. We propose a new mechanism in which the nucleoid provides a scaffold to guide the proper segregation of partition complexes.


Assuntos
Bacillus subtilis/genética , Proteínas de Bactérias/genética , Segregação de Cromossomos , DNA Primase/genética , DNA Bacteriano/genética , Proteínas de Escherichia coli/genética , Escherichia coli/genética , Bacillus subtilis/metabolismo , Bacillus subtilis/ultraestrutura , Proteínas de Bactérias/metabolismo , Compartimento Celular/genética , Cromossomos Bacterianos/química , Cromossomos Bacterianos/metabolismo , DNA Primase/metabolismo , DNA Bacteriano/metabolismo , Escherichia coli/metabolismo , Escherichia coli/ultraestrutura , Proteínas de Escherichia coli/metabolismo , Expressão Gênica , Ligação Proteica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA