Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Mar Pollut Bull ; 201: 116193, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38428047

RESUMO

Natural ecological restoration is a cornerstone of modern conservation science and managers need more documented "success stories" to lead the way. In French mediterranean sea, we monitored Posidonia oceanica lower limit using acoustic telemetry and photogrammetry and investigated the descriptors driving its variations, at a national scale and over more than a decade. We showed significant effects of environmental descriptors (region, sea surface temperature and bottom temperature) but also of wastewater treatment plant (WWTP) effluents proxies (size of WWTP, time since conformity, and distance to the closest effluent) on the meadows lower limit progression. This work indicates a possible positive response of P. oceanica meadows to improvements in wastewater treatment and a negative effect of high temperatures. While more data is needed, the example of French wastewater policy should inspire stakeholders and coastal managers in their efforts to limit anthropogenic pressures on vulnerable ecosystems.


Assuntos
Alismatales , Ecossistema , Pradaria , Mar Mediterrâneo , Alismatales/fisiologia , Temperatura
2.
Mar Pollut Bull ; 198: 115911, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38103498

RESUMO

The increasing threats to ecosystems and humans from marine plastic pollution require a comprehensive assessment. We present a plastisphere case study from Reunion Island, a remote oceanic island located in the Southwest Indian Ocean, polluted by plastics. We characterized the plastic pollution on the island's coastal waters, described the associated microbiome, explored viable bacterial flora and the presence of antimicrobial resistant (AMR) bacteria. Reunion Island faces plastic pollution with up to 10,000 items/km2 in coastal water. These plastics host microbiomes dominated by Proteobacteria (80 %), including dominant genera such as Psychrobacter, Photobacterium, Pseudoalteromonas and Vibrio. Culturable microbiomes reach 107 CFU/g of microplastics, with dominance of Exiguobacterium and Pseudomonas. Plastics also carry AMR bacteria including ß-lactam resistance. Thus, Southwest Indian Ocean islands are facing serious plastic pollution. This pollution requires vigilant monitoring as it harbors a plastisphere including AMR, that threatens pristine ecosystems and potentially human health through the marine food chain.


Assuntos
Microbiota , Poluentes Químicos da Água , Humanos , Oceano Índico , Microplásticos , Plásticos , Reunião , Bactérias , Monitoramento Ambiental , Poluentes Químicos da Água/análise
3.
Mar Environ Res ; 190: 106080, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37422994

RESUMO

Recruitment is a critical component in the dynamics of coral assemblages, and a key question is to determine the degree to which spatial heterogeneity of adults is influenced by pre-vs. post-settlement processes. We analyzed the density of juvenile and adult corals among 18 stations located at three regions around Madagascar, and examined the effects of Marine Protected Areas (MPAs). Our survey did not detect a positive effect of MPAs on juveniles, except for Porites at the study scale. The MPA effect was more pronounced for adults, notably for Acropora, Montipora, Seriatopora, and Porites at the regional scale. For most dominant genera, densities of juveniles and adults were positively correlated at the study scale, and at least at one of the three regions. These outcomes suggest recruitment-limitation relationships for several coral taxa, although differences in post-settlement events may be sufficiently strong to distort the pattern established at settlement for other populations. The modest benefits of MPAs on the density of juvenile corals demonstrated here argue in favor of strengthening conservation measures more specifically focused to protect recruitment processes.


Assuntos
Antozoários , Animais , Antozoários/fisiologia , Recifes de Corais , Madagáscar
4.
Ecol Lett ; 26(6): 965-982, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36988091

RESUMO

Research on island species-area relationships (ISAR) has expanded to incorporate functional (IFDAR) and phylogenetic (IPDAR) diversity. However, relative to the ISAR, we know little about IFDARs and IPDARs, and lack synthetic global analyses of variation in form of these three categories of island diversity-area relationship (IDAR). Here, we undertake the first comparative evaluation of IDARs at the global scale using 51 avian archipelagic data sets representing true and habitat islands. Using null models, we explore how richness-corrected functional and phylogenetic diversity scale with island area. We also provide the largest global assessment of the impacts of species introductions and extinctions on the IDAR. Results show that increasing richness with area is the primary driver of the (non-richness corrected) IPDAR and IFDAR for many data sets. However, for several archipelagos, richness-corrected functional and phylogenetic diversity changes linearly with island area, suggesting that the dominant community assembly processes shift along the island area gradient. We also find that archipelagos with the steepest ISARs exhibit the biggest differences in slope between IDARs, indicating increased functional and phylogenetic redundancy on larger islands in these archipelagos. In several cases introduced species seem to have 're-calibrated' the IDARs such that they resemble the historic period prior to recent extinctions.


Assuntos
Biodiversidade , Aves , Animais , Filogenia , Ilhas , Ecossistema
5.
PLoS One ; 17(10): e0275017, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36264983

RESUMO

Madagascar is a major hotspot of biodiversity in the Western Indian Ocean, but, as in many other regions, coral reefs surrounding the island confront large-scale disturbances and human-induced local stressors. Conservation actions have been implemented with encouraging results for fisheries, though their benefit on coral assemblages has never been rigorously addressed. In this context, we analyzed the multiscale spatial variation of the composition, generic richness, abundance, life history strategies, and cover of coral assemblages among 18 stations placed at three regions around the island. The potential influences of marine protected areas (MPAs), algal cover, substrate rugosity, herbivorous fish biomass, and geographic location were also analyzed. Our results highlight the marked spatial variability, with variation at either or both regional and local scales for all coral descriptors. The northeast coastal region of Masoala was characterized by the high abundance of coral colonies, most notably of the competitive Acropora and Pocillopora genera and stress-tolerant taxa at several stations. The southwest station of Salary Nord was distinguished by lower abundances, with depauperate populations of competitive taxa. On the northwest coast, Nosy-Be was characterized by higher diversity and abundance as well as by high coral cover (~42-70%) recorded at unfished stations. Results clearly underline the positive effects of MPAs on all but one of the coral descriptors, particularly at Nosy-Be where the highest contrast between fished and unfished stations was observed. Biomass of herbivorous fishes, crustose coralline algae cover, and substrate rugosity were also positively related to several coral descriptors. The occurrence of reefs with high diversity, abundance, and cover of corals, including the competitive Acropora, is a major finding of this study. Our results strongly support the implementation of locally managed marine areas with strong involvement by primary users, particularly to assist in management in countries with reduced logistic and human resources such as Madagascar.


Assuntos
Antozoários , Animais , Humanos , Madagáscar , Recifes de Corais , Pesqueiros , Biodiversidade , Peixes , Ecossistema
6.
PLoS Biol ; 20(6): e3001640, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35671265

RESUMO

Reef fishes are closely connected to many human populations, yet their contributions to society are mostly considered through their economic and ecological values. Cultural and intrinsic values of reef fishes to the public can be critical drivers of conservation investment and success, but remain challenging to quantify. Aesthetic value represents one of the most immediate and direct means by which human societies engage with biodiversity, and can be evaluated from species to ecosystems. Here, we provide the aesthetic value of 2,417 ray-finned reef fish species by combining intensive evaluation of photographs of fishes by humans with predicted values from machine learning. We identified important biases in species' aesthetic value relating to evolutionary history, ecological traits, and International Union for Conservation of Nature (IUCN) threat status. The most beautiful fishes are tightly packed into small parts of both the phylogenetic tree and the ecological trait space. In contrast, the less attractive fishes are the most ecologically and evolutionary distinct species and those recognized as threatened. Our study highlights likely important mismatches between potential public support for conservation and the species most in need of this support. It also provides a pathway for scaling-up our understanding of what are both an important nonmaterial facet of biodiversity and a key component of nature's contribution to people, which could help better anticipate consequences of species loss and assist in developing appropriate communication strategies.


Assuntos
Recifes de Corais , Ecossistema , Animais , Biodiversidade , Conservação dos Recursos Naturais , Estética , Peixes , Humanos , Filogenia
7.
ISME J ; 16(3): 726-737, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34580430

RESUMO

The recent application of macroecological tools and concepts has made it possible to identify consistent patterns in the distribution of microbial biodiversity, which greatly improved our understanding of the microbial world at large scales. However, the distribution of microbial functions remains largely uncharted from the macroecological point of view. Here, we used macroecological models to examine how the genes encoding the functional capabilities of microorganisms are distributed within and across soil systems. Models built using functional gene array data from 818 soil microbial communities showed that the occupancy-frequency distributions of genes were bimodal in every studied site, and that their rank-abundance distributions were best described by a lognormal model. In addition, the relationships between gene occupancy and abundance were positive in all sites. This allowed us to identify genes with high abundance and ubiquitous distribution (core) and genes with low abundance and limited spatial distribution (satellites), and to show that they encode different sets of microbial traits. Common genes encode microbial traits related to the main biogeochemical cycles (C, N, P and S) while rare genes encode traits related to adaptation to environmental stresses, such as nutrient limitation, resistance to heavy metals and degradation of xenobiotics. Overall, this study characterized for the first time the distribution of microbial functional genes within soil systems, and highlight the interest of macroecological models for understanding the functional organization of microbial systems across spatial scales.


Assuntos
Microbiota , Solo , Biodiversidade , Solo/química , Microbiologia do Solo
8.
Nat Commun ; 12(1): 7282, 2021 12 14.
Artigo em Inglês | MEDLINE | ID: mdl-34907163

RESUMO

Ecosystems face both local hazards, such as over-exploitation, and global hazards, such as climate change. Since the impact of local hazards attenuates with distance from humans, local extinction risk should decrease with remoteness, making faraway areas safe havens for biodiversity. However, isolation and reduced anthropogenic disturbance may increase ecological specialization in remote communities, and hence their vulnerability to secondary effects of diversity loss propagating through networks of interacting species. We show this to be true for reef fish communities across the globe. An increase in fish-coral dependency with the distance of coral reefs from human settlements, paired with the far-reaching impacts of global hazards, increases the risk of fish species loss, counteracting the benefits of remoteness. Hotspots of fish risk from fish-coral dependency are distinct from those caused by direct human impacts, increasing the number of risk hotspots by ~30% globally. These findings might apply to other ecosystems on Earth and depict a world where no place, no matter how remote, is safe for biodiversity, calling for a reconsideration of global conservation priorities.


Assuntos
Antozoários/fisiologia , Branqueamento de Corais/efeitos adversos , Recifes de Corais , Peixes/fisiologia , Animais , Efeitos Antropogênicos , Biodiversidade , Mudança Climática , Conservação dos Recursos Naturais , Humanos , Análise Espacial
9.
Proc Biol Sci ; 288(1953): 20210274, 2021 06 30.
Artigo em Inglês | MEDLINE | ID: mdl-34187190

RESUMO

Reef fishes are a treasured part of marine biodiversity, and also provide needed protein for many millions of people. Although most reef fishes might survive projected increases in ocean temperatures, corals are less tolerant. A few fish species strictly depend on corals for food and shelter, suggesting that coral extinctions could lead to some secondary fish extinctions. However, secondary extinctions could extend far beyond those few coral-dependent species. Furthermore, it is yet unknown how such fish declines might vary around the world. Current coral mass mortalities led us to ask how fish communities would respond to coral loss within and across oceans. We mapped 6964 coral-reef-fish species and 119 coral genera, and then regressed reef-fish species richness against coral generic richness at the 1° scale (after controlling for biogeographic factors that drive species diversification). Consistent with small-scale studies, statistical extrapolations suggested that local fish richness across the globe would be around half its current value in a hypothetical world without coral, leading to more areas with low or intermediate fish species richness and fewer fish diversity hotspots.


Assuntos
Antozoários , Tetraodontiformes , Animais , Biodiversidade , Recifes de Corais , Peixes , Humanos , Oceanos e Mares
10.
Nat Commun ; 8: 16039, 2017 07 10.
Artigo em Inglês | MEDLINE | ID: mdl-28691710

RESUMO

Marine reserves are viewed as flagship tools to protect exploited species and to contribute to the effective management of coastal fisheries. Yet, the extent to which marine reserves are globally interconnected and able to effectively seed areas, where fisheries are most critical for food and livelihood security is largely unknown. Using a hydrodynamic model of larval dispersal, we predict that most marine reserves are not interconnected by currents and that their potential benefits to fishing areas are presently limited, since countries with high dependency on coastal fisheries receive very little larval supply from marine reserves. This global mismatch could be reversed, however, by placing new marine reserves in areas sufficiently remote to minimize social and economic costs but sufficiently connected through sea currents to seed the most exploited fisheries and endangered ecosystems.


Assuntos
Distribuição Animal , Conservação dos Recursos Naturais , Pesqueiros , Peixes , Modelos Teóricos , Animais , Hidrodinâmica , Larva , Movimentos da Água
11.
Mar Environ Res ; 119: 114-25, 2016 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-27262669

RESUMO

Acknowledged as among the worst invasive marine species, Mnemiopsis leidyi has spread through European Seas since the mid-1980's. Here we report a bimonthly survey conducted in 2010-11 in three lagoons (Bages-Sigean, Thau and Berre) and at two adjacent coastal stations (Sète and SOMLIT-Marseille) along the French Mediterranean coast. M. leidyi was present only in Berre and Bages-Sigean with maximum abundances observed in late summer. M. leidyi adults were present year round in Berre with the largest organisms (∼6 cm) observed in April. In Bages-Sigean, they occurred in sufficient abundance to be recorded by fishermen between August and November. Multiple linear regressions highlighted that abundance in both lagoons was mainly influenced by direct effects of salinity and chlorophyll-a, and temperature to a lesser extent. While M. leidyi has not yet been recorded in Thau, the lagoon is continually monitored to detect the potential establishment of M. leidyi.


Assuntos
Ctenóforos/fisiologia , Monitoramento Ambiental , Espécies Introduzidas , Animais , Clorofila/análise , Clorofila A , Mar Mediterrâneo , Salinidade
12.
PLoS One ; 11(3): e0151744, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27014867

RESUMO

Assemblages that are exposed to recurring temporal environmental changes can show changes in their ecological properties. These can be expressed by differences in diversity and assembly rules. Both can be identified using two measures of diversity: functional (FD) and phylogenetic diversity (PD). Frog communities are understudied in this regard, especially during the tadpole life stage. We utilised tadpole assemblages from Madagascan rainforest streams to test predictions of seasonal changes on diversity and assemblage composition and on diversity measures. From the warm-wet to the cool-dry season, species richness (SR) of tadpole assemblages decreased. Also FD and PD decreased, but FD less and PD more than expected by chance. During the dry season, tadpole assemblages were characterised by functional redundancy (among assemblages-with increasing SR), high FD (compared to a null model), and low PD (phylogenetic clustering; compared to a null model). Although mutually contradictory at first glance, these results indicate competition as tadpole community assembly driving force. This is true during the limiting cool-dry season but not during the more suitable warm-wet season. We thereby show that assembly rules can strongly depend on season, that comparing FD and PD can reveal such forces, that FD and PD are not interchangeable, and that conclusions on assembly rules based on FD alone are critical.


Assuntos
Anuros/fisiologia , Biodiversidade , Ecologia , Larva/fisiologia , Animais , Modelos Teóricos , Filogenia , Floresta Úmida , Estações do Ano
13.
Ecology ; 96(10): 2814-22, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26649401

RESUMO

In analogy to the species-area relationship (SAR), one of the few laws in ecology, the phylogenetic diversity-area relationship (PDAR) describes the tendency of phylogenetic diversity (PD) to increase with area. Although investigating PDAR has the potential to unravel the underlying processes shaping assemblages across spatial scales and to predict PD loss through habitat reduction, it has been little investigated so far. Focusing on PD has noticeable advantages compared to species richness (SR), since PD also gives insights on processes such as speciation/extinction, assembly rules and ecosystem functioning. Here we investigate the universality and pervasiveness of the PDAR at continental scale using terrestrial mammals as study case. We define the relative robustness of PD (compared to SR) to habitat loss as the area between the standardized PDAR and standardized SAR (i.e., standardized by the diversity of the largest spatial window) divided by the area under the standardized SAR only. This metric quantifies the relative increase of PD robustness compared to SR robustness. We show that PD robustness is higher than SR robustness but that it varies among continents. We further use a null model approach to disentangle the relative effect of phylogenetic tree shape and nonrandom spatial distribution of evolutionary history on the PDAR. We find that, for most spatial scales and for all continents except Eurasia, PDARs are not different from expected by a model using only the observed SAR and the shape of the phylogenetic tree at continental scale. Interestingly, we detect a strong phylogenetic structure of the Eurasian PDAR that can be predicted by a model that specifically account for a finer biogeographical delineation of this continent. In conclusion, the relative robustness of PD to habitat loss compared to species richness is determined by the phylogenetic tree shape but also depends on the spatial structure of PD.


Assuntos
Distribuição Animal , Variação Genética , Mamíferos/classificação , Mamíferos/genética , Filogenia , Animais , Biodiversidade , Modelos Biológicos
14.
Philos Trans R Soc Lond B Biol Sci ; 370(1662): 20140005, 2015 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-25561666

RESUMO

Protected areas (PAs) are pivotal tools for biodiversity conservation on the Earth. Europe has had an extensive protection system since Natura 2000 areas were created in parallel with traditional parks and reserves. However, the extent to which this system covers not only taxonomic diversity but also other biodiversity facets, such as evolutionary history and functional diversity, has never been evaluated. Using high-resolution distribution data of all European tetrapods together with dated molecular phylogenies and detailed trait information, we first tested whether the existing European protection system effectively covers all species and in particular, those with the highest evolutionary or functional distinctiveness. We then tested the ability of PAs to protect the entire tetrapod phylogenetic and functional trees of life by mapping species' target achievements along the internal branches of these two trees. We found that the current system is adequately representative in terms of the evolutionary history of amphibians while it fails for the rest. However, the most functionally distinct species were better represented than they would be under random conservation efforts. These results imply better protection of the tetrapod functional tree of life, which could help to ensure long-term functioning of the ecosystem, potentially at the expense of conserving evolutionary history.


Assuntos
Adaptação Biológica/fisiologia , Anfíbios/fisiologia , Aves/fisiologia , Conservação dos Recursos Naturais/métodos , Ecossistema , Mamíferos/fisiologia , Filogenia , Répteis/fisiologia , Adaptação Biológica/genética , Anfíbios/genética , Animais , Aves/genética , Europa (Continente) , Mamíferos/genética , Répteis/genética
15.
Proc Natl Acad Sci U S A ; 111(38): 13709-14, 2014 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-25225395

RESUMO

Analyses of species-diversity patterns of remote islands have been crucial to the development of biogeographic theory, yet little is known about corresponding patterns in functional traits on islands and how, for example, they may be affected by the introduction of exotic species. We collated trait data for spiders and beetles and used a functional diversity index (FRic) to test for nonrandomness in the contribution of endemic, other native (also combined as indigenous), and exotic species to functional-trait space across the nine islands of the Azores. In general, for both taxa and for each distributional category, functional diversity increases with species richness, which, in turn scales with island area. Null simulations support the hypothesis that each distributional group contributes to functional diversity in proportion to their species richness. Exotic spiders have added novel trait space to a greater degree than have exotic beetles, likely indicating greater impact of the reduction of immigration filters and/or differential historical losses of indigenous species. Analyses of species occurring in native-forest remnants provide limited indications of the operation of habitat filtering of exotics for three islands, but only for beetles. Although the general linear (not saturating) pattern of trait-space increase with richness of exotics suggests an ongoing process of functional enrichment and accommodation, further work is urgently needed to determine how estimates of extinction debt of indigenous species should be adjusted in the light of these findings.


Assuntos
Biodiversidade , Besouros/fisiologia , Filogeografia , Animais , Açores
16.
Ecol Lett ; 17(11): 1351-64, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25205436

RESUMO

Species are the unit of analysis in many global change and conservation biology studies; however, species are not uniform entities but are composed of different, sometimes locally adapted, populations differing in plasticity. We examined how intraspecific variation in thermal niches and phenotypic plasticity will affect species distributions in a warming climate. We first developed a conceptual model linking plasticity and niche breadth, providing five alternative intraspecific scenarios that are consistent with existing literature. Secondly, we used ecological niche-modeling techniques to quantify the impact of each intraspecific scenario on the distribution of a virtual species across a geographically realistic setting. Finally, we performed an analogous modeling exercise using real data on the climatic niches of different tree provenances. We show that when population differentiation is accounted for and dispersal is restricted, forecasts of species range shifts under climate change are even more pessimistic than those using the conventional assumption of homogeneously high plasticity across a species' range. Suitable population-level data are not available for most species so identifying general patterns of population differentiation could fill this gap. However, the literature review revealed contrasting patterns among species, urging greater levels of integration among empirical, modeling and theoretical research on intraspecific phenotypic variation.


Assuntos
Aclimatação/genética , Mudança Climática , Ecossistema , Modelos Biológicos , Animais , Simulação por Computador , Variação Genética , Genótipo , Fenótipo , Pinus/genética , Plantas/genética
17.
Ecol Lett ; 17(9): 1101-10, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24985880

RESUMO

The impact of anthropogenic activity on ecosystems has highlighted the need to move beyond the biogeographical delineation of species richness patterns to understanding the vulnerability of species assemblages, including the functional components that are linked to the processes they support. We developed a decision theory framework to quantitatively assess the global taxonomic and functional vulnerability of fish assemblages on tropical reefs using a combination of sensitivity to species loss, exposure to threats and extent of protection. Fish assemblages with high taxonomic and functional sensitivity are often exposed to threats but are largely missed by the global network of marine protected areas. We found that areas of high species richness spatially mismatch areas of high taxonomic and functional vulnerability. Nevertheless, there is strong spatial match between taxonomic and functional vulnerabilities suggesting a potential win-win conservation-ecosystem service strategy if more protection is set in these locations.


Assuntos
Biodiversidade , Recifes de Corais , Peixes/fisiologia , Modelos Biológicos , Animais , Conservação dos Recursos Naturais , Ecossistema
18.
Glob Ecol Biogeogr ; 23(8): 836-847, 2014 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-25071413

RESUMO

AIM: To define biome-scale hotspots of phylogenetic and functional mammalian biodiversity (PD and FD, respectively) and compare them to 'classical' hotspots based on species richness (SR) only. LOCATION: Global. METHODS: SR, PD & FD were computed for 782 terrestrial ecoregions using distribution ranges of 4616 mammalian species. We used a set of comprehensive diversity indices unified by a recent framework that incorporates the species relative coverage in each ecoregion. We build large-scale multifaceted diversity-area relationships to rank ecoregions according to their levels of biodiversity while accounting for the effect of area on each diversity facet. Finally we defined hotspots as the top-ranked ecoregions. RESULTS: While ignoring species relative coverage led to a relative good congruence between biome top ranked SR, PD and FD hotspots, ecoregions harboring a rich and abundantly represented evolutionary history and functional diversity did not match with top ranked ecoregions defined by species richness. More importantly PD and FD hotspots showed important spatial mismatches. We also found that FD and PD generally reached their maximum values faster than species richness as a function of area. MAIN CONCLUSIONS: The fact that PD/FD reach faster their maximal value than SR may suggest that the two former facets might be less vulnerable to habitat loss than the latter. While this point is expected, it is the first time that it is quantified at global scale and should have important consequences in conservation. Incorporating species relative coverage into the delineation of multifaceted hotspots of diversity lead to weak congruence between SR, PD and FD hotspots. This means that maximizing species number may fail at preserving those nodes (in the phylogenetic or functional tree) that are relatively abundant in the ecoregion. As a consequence it may be of prime importance to adopt a multifaceted biodiversity perspective to inform conservation strategies at global scale.

19.
Science ; 338(6113): 1481-4, 2012 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-23239740

RESUMO

Most eukaryotic organisms are arthropods. Yet, their diversity in rich terrestrial ecosystems is still unknown. Here we produce tangible estimates of the total species richness of arthropods in a tropical rainforest. Using a comprehensive range of structured protocols, we sampled the phylogenetic breadth of arthropod taxa from the soil to the forest canopy in the San Lorenzo forest, Panama. We collected 6144 arthropod species from 0.48 hectare and extrapolated total species richness to larger areas on the basis of competing models. The whole 6000-hectare forest reserve most likely sustains 25,000 arthropod species. Notably, just 1 hectare of rainforest yields >60% of the arthropod biodiversity held in the wider landscape. Models based on plant diversity fitted the accumulated species richness of both herbivore and nonherbivore taxa exceptionally well. This lends credence to global estimates of arthropod biodiversity developed from plant models.


Assuntos
Artrópodes/anatomia & histologia , Artrópodes/classificação , Biodiversidade , Animais , Herbivoria , Chuva , Árvores , Clima Tropical
20.
Glob Chang Biol ; 18(10): 2995-3003, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28741816

RESUMO

Species Temporal Turnover (STT) is one of the most familiar metrics to assess changes in assemblage composition as a consequence of climate change. However, STT mixes two components in one metric, changes in assemblage composition caused by a process of species loss or gain (i.e. the nestedness component) and changes in assemblage composition caused by a process of species replacement (i.e. the species replacement component). Drawing on previous studies investigating spatial patterns of beta diversity, we propose measures of STT that allow analysing each component (species replacement vs. nestedness), separately. We also present a mapping strategy to simultaneously visualize changes in species richness and assemblage composition. To illustrate our approach, we used the Mediterranean coastal fish fauna as a case study. Using Bioclimatic Envelope Models (BEMs) we first projected the potential future climatic niches of 288 coastal Mediterranean fish species based on a global warming scenario. We then aggregated geographically the species-level projections to analyse the projected changes in species richness and composition. Our results show that projected changes in assemblage composition are caused by different processes (species replacement vs. nestedness) in several areas of the Mediterranean Sea. In addition, our mapping strategy highlights that the coastal fish fauna in several regions of the Mediterranean Sea could experience a 'cul-de-sac' effect if exposed to climate warming. Overall, the joint exploration of changes in species richness and composition coupled with the distinction between species replacement and nestedness bears important information for understanding the nature of climate change impacts on biodiversity. These methodological advances should help decision-makers in prioritizing action in the areas facing the greatest vulnerability to climate.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA