Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 13(1): 7845, 2022 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-36543777

RESUMO

The assembly of biomolecules into condensates is a fundamental process underlying the organisation of the intracellular space and the regulation of many cellular functions. Mapping and characterising phase behaviour of biomolecules is essential to understand the mechanisms of condensate assembly, and to develop therapeutic strategies targeting biomolecular condensate systems. A central concept for characterising phase-separating systems is the phase diagram. Phase diagrams are typically built from numerous individual measurements sampling different parts of the parameter space. However, even when performed in microwell plate format, this process is slow, low throughput and requires significant sample consumption. To address this challenge, we present here a combinatorial droplet microfluidic platform, termed PhaseScan, for rapid and high-resolution acquisition of multidimensional biomolecular phase diagrams. Using this platform, we characterise the phase behaviour of a wide range of systems under a variety of conditions and demonstrate that this approach allows the quantitative characterisation of the effect of small molecules on biomolecular phase transitions.


Assuntos
Condensados Biomoleculares , Microfluídica , Espaço Intracelular , Transição de Fase
2.
Cell Mol Life Sci ; 79(10): 526, 2022 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-36136249

RESUMO

CAPRIN1 is a ubiquitously expressed protein, abundant in the brain, where it regulates the transport and translation of mRNAs of genes involved in synaptic plasticity. Here we describe two unrelated children, who developed early-onset ataxia, dysarthria, cognitive decline and muscle weakness. Trio exome sequencing unraveled the identical de novo c.1535C > T (p.Pro512Leu) missense variant in CAPRIN1, affecting a highly conserved residue. In silico analyses predict an increased aggregation propensity of the mutated protein. Indeed, overexpressed CAPRIN1P512L forms insoluble ubiquitinated aggregates, sequestrating proteins associated with neurodegenerative disorders (ATXN2, GEMIN5, SNRNP200 and SNCA). Moreover, the CAPRIN1P512L mutation in isogenic iPSC-derived cortical neurons causes reduced neuronal activity and altered stress granule dynamics. Furthermore, nano-differential scanning fluorimetry reveals that CAPRIN1P512L aggregation is strongly enhanced by RNA in vitro. These findings associate the gain-of-function Pro512Leu mutation to early-onset ataxia and neurodegeneration, unveiling a critical residue of CAPRIN1 and a key role of RNA-protein interactions.


Assuntos
Proteínas de Ciclo Celular , Agregados Proteicos , Ataxia , Proteínas de Ciclo Celular/metabolismo , Criança , Humanos , Mutação , RNA Mensageiro/metabolismo
3.
Nat Commun ; 12(1): 1085, 2021 02 17.
Artigo em Inglês | MEDLINE | ID: mdl-33597515

RESUMO

Liquid-liquid phase separation of proteins underpins the formation of membraneless compartments in living cells. Elucidating the molecular driving forces underlying protein phase transitions is therefore a key objective for understanding biological function and malfunction. Here we show that cellular proteins, which form condensates at low salt concentrations, including FUS, TDP-43, Brd4, Sox2, and Annexin A11, can reenter a phase-separated regime at high salt concentrations. By bringing together experiments and simulations, we demonstrate that this reentrant phase transition in the high-salt regime is driven by hydrophobic and non-ionic interactions, and is mechanistically distinct from the low-salt regime, where condensates are additionally stabilized by electrostatic forces. Our work thus sheds light on the cooperation of hydrophobic and non-ionic interactions as general driving forces in the condensation process, with important implications for aberrant function, druggability, and material properties of biomolecular condensates.


Assuntos
Interações Hidrofóbicas e Hidrofílicas , Simulação de Dinâmica Molecular , Transição de Fase , Proteínas/química , Eletricidade Estática , Animais , Anexinas/química , Proteínas de Ciclo Celular/química , Proteínas de Ligação a DNA/química , Humanos , Proteína FUS de Ligação a RNA/química , Fatores de Transcrição SOXB1/química , Células Sf9 , Spodoptera , Fatores de Transcrição/química
4.
Cell ; 181(2): 346-361.e17, 2020 04 16.
Artigo em Inglês | MEDLINE | ID: mdl-32302572

RESUMO

Stressed cells shut down translation, release mRNA molecules from polysomes, and form stress granules (SGs) via a network of interactions that involve G3BP. Here we focus on the mechanistic underpinnings of SG assembly. We show that, under non-stress conditions, G3BP adopts a compact auto-inhibited state stabilized by electrostatic intramolecular interactions between the intrinsically disordered acidic tracts and the positively charged arginine-rich region. Upon release from polysomes, unfolded mRNAs outcompete G3BP auto-inhibitory interactions, engendering a conformational transition that facilitates clustering of G3BP through protein-RNA interactions. Subsequent physical crosslinking of G3BP clusters drives RNA molecules into networked RNA/protein condensates. We show that G3BP condensates impede RNA entanglement and recruit additional client proteins that promote SG maturation or induce a liquid-to-solid transition that may underlie disease. We propose that condensation coupled to conformational rearrangements and heterotypic multivalent interactions may be a general principle underlying RNP granule assembly.


Assuntos
Grânulos Citoplasmáticos/metabolismo , DNA Helicases/metabolismo , Proteínas de Ligação a Poli-ADP-Ribose/metabolismo , RNA Helicases/metabolismo , Proteínas com Motivo de Reconhecimento de RNA/metabolismo , Ribonucleoproteínas/metabolismo , Proteínas de Transporte/metabolismo , Linhagem Celular Tumoral , Citoplasma/metabolismo , Células HeLa , Humanos , Conformação de Ácido Nucleico , Organelas/metabolismo , Fosforilação , RNA Mensageiro/metabolismo , Estresse Fisiológico/genética
5.
EMBO J ; 38(15): e101341, 2019 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-31271238

RESUMO

Nuclear protein aggregation has been linked to genome instability and disease. The main source of aggregation-prone proteins in cells is defective ribosomal products (DRiPs), which are generated by translating ribosomes in the cytoplasm. Here, we report that DRiPs rapidly diffuse into the nucleus and accumulate in nucleoli and PML bodies, two membraneless organelles formed by liquid-liquid phase separation. We show that nucleoli and PML bodies act as dynamic overflow compartments that recruit protein quality control factors and store DRiPs for later clearance. Whereas nucleoli serve as constitutive overflow compartments, PML bodies are stress-inducible overflow compartments for DRiPs. If DRiPs are not properly cleared by chaperones and proteasomes due to proteostasis impairment, nucleoli undergo amyloidogenesis and PML bodies solidify. Solid PML bodies immobilize 20S proteasomes and limit the recycling of free ubiquitin. Ubiquitin depletion, in turn, compromises the formation of DNA repair compartments at fragile chromosomal sites, ultimately threatening cell survival.


Assuntos
Núcleo Celular/metabolismo , Instabilidade Genômica , Ribossomos/metabolismo , Ubiquitina/metabolismo , Núcleo Celular/genética , Reparo do DNA , Células HeLa , Humanos , Chaperonas Moleculares/metabolismo , Complexo de Endopeptidases do Proteassoma/metabolismo
6.
Science ; 360(6391): 918-921, 2018 05 25.
Artigo em Inglês | MEDLINE | ID: mdl-29650702

RESUMO

Prion-like RNA binding proteins (RBPs) such as TDP43 and FUS are largely soluble in the nucleus but form solid pathological aggregates when mislocalized to the cytoplasm. What keeps these proteins soluble in the nucleus and promotes aggregation in the cytoplasm is still unknown. We report here that RNA critically regulates the phase behavior of prion-like RBPs. Low RNA/protein ratios promote phase separation into liquid droplets, whereas high ratios prevent droplet formation in vitro. Reduction of nuclear RNA levels or genetic ablation of RNA binding causes excessive phase separation and the formation of cytotoxic solid-like assemblies in cells. We propose that the nucleus is a buffered system in which high RNA concentrations keep RBPs soluble. Changes in RNA levels or RNA binding abilities of RBPs cause aberrant phase transitions.


Assuntos
Núcleo Celular/química , Citoplasma/química , Príons/química , Agregação Patológica de Proteínas/metabolismo , RNA Nuclear/química , Proteínas de Ligação a RNA/química , Células HeLa , Humanos , Gotículas Lipídicas , Transição de Fase , Agregados Proteicos , Solubilidade
7.
Elife ; 52016 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-27802129

RESUMO

The four members of the vertebrate CPEB family of RNA-binding proteins share similar RNA-binding domains by which they regulate the translation of CPE-containing mRNAs, thereby controlling cell cycle and differentiation or synaptic plasticity. However, the N-terminal domains of CPEBs are distinct and contain specific regulatory post-translational modifications that presumably differentially integrate extracellular signals. Here we show that CPEB4 activity is regulated by ERK2- and Cdk1-mediated hyperphosphorylation. These phosphorylation events additively activate CPEB4 in M-phase by maintaining it in its monomeric state. In contrast, unphosphorylated CPEB4 phase separates into inactive, liquid-like droplets through its intrinsically disordered regions in the N-terminal domain. This dynamic and reversible regulation of CPEB4 is coordinated with that of CPEB1 through Cdk1, which inactivates CPEB1 while activating CPEB4, thereby integrating phase-specific signal transduction pathways to regulate cell cycle progression.


Assuntos
Proteína Quinase CDC2/metabolismo , Ciclo Celular , Regulação da Expressão Gênica , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Oócitos/fisiologia , Processamento de Proteína Pós-Traducional , Proteínas de Ligação a RNA/metabolismo , Proteínas de Xenopus/metabolismo , Animais , Fosforilação , Xenopus
8.
Genes Dev ; 28(13): 1498-514, 2014 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-24990967

RESUMO

Cytoplasmic changes in polyA tail length is a key mechanism of translational control and is implicated in germline development, synaptic plasticity, cellular proliferation, senescence, and cancer progression. The presence of a U-rich cytoplasmic polyadenylation element (CPE) in the 3' untranslated regions (UTRs) of the responding mRNAs gives them the selectivity to be regulated by the CPE-binding (CPEB) family of proteins, which recognizes RNA via the tandem RNA recognition motifs (RRMs). Here we report the solution structures of the tandem RRMs of two human paralogs (CPEB1 and CPEB4) in their free and RNA-bound states. The structures reveal an unprecedented arrangement of RRMs in the free state that undergo an original closure motion upon RNA binding that ensures high fidelity. Structural and functional characterization of the ZZ domain (zinc-binding domain) of CPEB1 suggests a role in both protein-protein and protein-RNA interactions. Together with functional studies, the structures reveal how RNA binding by CPEB proteins leads to an optimal positioning of the N-terminal and ZZ domains at the 3' UTR, which favors the nucleation of the functional ribonucleoprotein complexes for translation regulation.


Assuntos
Modelos Moleculares , Proteínas de Ligação a RNA/química , Proteínas de Ligação a RNA/metabolismo , RNA/metabolismo , Fatores de Transcrição/química , Fatores de Transcrição/metabolismo , Fatores de Poliadenilação e Clivagem de mRNA/química , Fatores de Poliadenilação e Clivagem de mRNA/metabolismo , Regiões 3' não Traduzidas , Motivos de Aminoácidos , Cristalografia por Raios X , Citoplasma/metabolismo , Regulação da Expressão Gênica , Humanos , Estrutura Terciária de Proteína , RNA/química , RNA Mensageiro/metabolismo , Ribonucleoproteínas/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA