Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Ticks Tick Borne Dis ; 11(6): 101509, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32993929

RESUMO

Ixodes ricinus is the most common and widely distributed tick species in Europe, responsible for several zoonotic diseases, including Lyme borreliosis. Population genetics of disease vectors is a useful tool for understanding the spread of pathogens and infection risks. Despite the threat to the public health due to the climate-driven distribution changes of I. ricinus, the genetic structure of tick populations, though essential for understanding epidemiology, remains unclear. Previous studies have demonstrated weak to no apparent spatial pattern of genetic differentiation between European populations. Here, we analysed the population genetic structure of 497 individuals from 28 tick populations sampled from 20 countries across Europe, the Middle-East, and northern Africa. We analysed 125 SNPs loci after quality control. We ran Bayesian and multivariate hierarchical clustering analyses to identify and describe clusters of genetically related individuals. Both clustering methods support the identification of three spatially-structured clusters. Individuals from the south and north-western parts of Eurasia form a separated cluster from northern European populations, while central European populations are a mix between the two groups. Our findings have important implications for understanding the dispersal processes that shape the spread of zoonotic diseases under anthropogenic global changes.


Assuntos
Variação Genética , Ixodes/genética , Distribuição Animal , Animais , Teorema de Bayes , Europa (Continente) , Análise Multivariada , Polimorfismo de Nucleotídeo Único
2.
Mol Ecol ; 27(6): 1357-1370, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29412498

RESUMO

Urban areas are highly fragmented and thereby exert strong constraints on individual dispersal. Despite this, some species manage to persist in urban areas, such as the garden snail, Cornu aspersum, which is common in cityscapes despite its low mobility. Using landscape genetic approaches, we combined study area replication and multiscale analysis to determine how landscape composition, configuration and connectivity influence snail dispersal across urban areas. At the overall landscape scale, areas with a high percentage of roads decreased genetic differentiation between populations. At the population scale, genetic differentiation was positively linked with building surface, the proportion of borders where wooded patches and roads appeared side by side and the proportion of borders combining wooded patches and other impervious areas. Analyses based on pairwise genetic distances validated the isolation-by-distance and isolation-by-resistance models for this land snail, with an equal fit to least-cost paths and circuit-theory-based models. Each of the 12 landscapes analysed separately yielded specific relations to environmental features, whereas analyses integrating all replicates highlighted general common effects. Our results suggest that urban transport infrastructures facilitate passive snail dispersal. At a local scale, corresponding to active dispersal, unfavourable habitats (wooded and impervious areas) isolate populations. This work upholds the use of replicated landscapes to increase the generalizability of landscape genetics results and shows how multiscale analyses provide insight into scale-dependent processes.


Assuntos
Genética Populacional , Repetições de Microssatélites/genética , Caramujos/genética , Animais , Ecossistema , Meio Ambiente , Dinâmica Populacional , Caramujos/fisiologia
3.
Mol Phylogenet Evol ; 120: 218-232, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29247848

RESUMO

The land snail Cornu aspersum aspersum, native to the Mediterranean region, has been the subject of several anatomical and molecular studies leading to recognize two divergent lineages, named "East" and "West" according to their geographical distribution in North Africa. The first biogeographical scenario proposed the role of Oligocene paleogeographic events and Quaternary glacial refugia to explain spatial patterns of genetic variation. The aim of this study was to refine this scenario using molecular and morphometric data from 169 populations sampled across Mediterranean islands and continents. The two previously described lineages no longer correspond to distinct biogeographical entities. Phylogenetic relationships reveal the existence of seven clades, do not support the Tyrrhenian vicariance hypothesis, and suggest that C. a. aspersum most likely originates from North Africa. We found two contrasted patterns with the seven clades defining spatially well-structured populations in the southern Mediterranean whereas one clade is distributed across the basin. High genetic diversities and rates of endemism in North Africa support the role of this region for the diversification of C. a. aspersum. In referring to divergence times previously estimated, we suggest allopatric differentiation due to geological changes of the Atlas system and multiple refugial areas during Pleistocene glaciations. The new biogeographical scenario implies an initial range expansion from North Africa to the Iberian Peninsula and the peri-Tyrrhenian regions through land bridges connections during the Messinian Salinity Crisis and Pleistocene glaciations. Historical events appear to have also structured morphometric variation but recent dispersal events favored the emergence of secondary contacts between clades. Southern Mediterranean clades are limited to their initial distribution and populations of the recent clade would have rapidly recolonized the whole Mediterranean in the Holocene due to greater adaptive potential and the influence of human transportations.


Assuntos
Caramujos/classificação , África do Norte , Animais , Teorema de Bayes , Citocromos b/química , Citocromos b/classificação , Citocromos b/genética , DNA Mitocondrial/química , DNA Mitocondrial/classificação , DNA Mitocondrial/genética , Europa (Continente) , Variação Genética , Haplótipos , Humanos , Região do Mediterrâneo , Repetições de Microssatélites/genética , Filogenia , Filogeografia , Análise de Componente Principal , RNA Ribossômico 16S/química , RNA Ribossômico 16S/classificação , RNA Ribossômico 16S/genética , Caramujos/anatomia & histologia , Caramujos/genética
4.
J Anim Ecol ; 84(1): 228-38, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25059798

RESUMO

Intra- and interspecific differences in movement behaviour play an important role in the ecology and evolution of animals, particularly in fragmented landscapes. As a consequence of rarer and generally more fragmented habitat, and because dispersal tends to disrupt benefits brought by local adaptation, theory predicts that mobility and dispersal should be counter-selected in specialists. Using experimental data and phylogenetic comparative tools, we analysed movement propensity and capacity, as well as dispersal-related phenotypic traits, in controlled conditions in 20 species of European land snails from the Helicoidea superfamily. Costs of movement in terrestrial gastropods are among the highest in animals, which make them a potentially powerful model to test these predictions. Habitat specialists were indeed less likely to cross a boundary between a familiar and an unfamiliar substrate than generalists. They also had smaller feet, after accounting for size. Furthermore, exploring specialists were slower than generalists and had more tortuous trajectories, leading them to stay closer to the familiar patch. Movement traits were generally evolutionary labile, but some were constrained by body size, a phylogenetically conserved trait. High specialization and low-dispersal ability are two traits often considered to increase species vulnerability to fragmentation, climate changes and extinction. This study confirms they should not be considered separately, due to their integration in a dispersal syndrome. Therefore, specialist species face double penalty under habitat loss and other environmental changes, making them more vulnerable to extinction and contributing to the biotic homogenization of communities.


Assuntos
Distribuição Animal , Evolução Biológica , Ecossistema , Caramujos/fisiologia , Animais , França , Dados de Sequência Molecular , Filogenia , Análise de Sequência de DNA , Caramujos/genética , Especificidade da Espécie
5.
PLoS One ; 7(12): e49674, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23227148

RESUMO

This study is the first on the genetics of invasive populations of one of the most widely spread land mollusc species known in the world, the "Brown Snail" Cornu aspersum aspersum. Deliberately or accidentally imported, the species has become recently a notorious pest outside its native Mediterranean range. We compared the spatial structure and genetic variability of invasive (America, Oceania, South Africa) versus native populations using five microsatellite loci and mitochondrial (Cyt b and 16S rRNA) genes as a first step towards (i) the detection of potential source populations, and (ii) a better understanding of mechanisms governing evolutionary changes involved in the invasion process. Results based on multivariate analysis (Discriminant Analysis of Principal Components), Bayesian statistical inference (Clustering, Approximate Bayesian Computation) and demographic tests allowed a construction of the introduction pathways of the species over recent centuries. While emigrants originated from only one of the two native lineages, the West one, the most likely scenario involved several introduction events and "source switching" comprising (i) an early stage (around 1660) of simultaneous introductions from Europe (France, Spain) towards Oceania (New Zealand) and California, (ii) from the early 18(th) century, a second colonization wave from bridgehead populations successfully established in California, (iii) genetic admixture in invasive areas where highly divergent populations came into contact as in New Zealand. Although these man-made pathways are consistent with historical data, introduction time estimates suggest that the two putative waves of invasion would have occurred long before the first field observations recorded, both in America and in Oceania. A prolonged lag period as the use of an incorrect generation time could explain such 100-150 years discrepancy. Lastly, the contrasting patterns of neutral genetic signal left in invasive populations are discussed in light of possible ways of facing novel environments (standing genetic variation versus new mutation).


Assuntos
Agricultura , Espécies Introduzidas , Caramujos/crescimento & desenvolvimento , Animais , DNA Mitocondrial/genética , Haplótipos , Caramujos/genética , Caramujos/fisiologia
6.
Mol Phylogenet Evol ; 57(1): 479-80, 2010 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-20471484

RESUMO

Recently, Bruyndonckx et al. (2009) used phylogenetic analyses of mitochondrial sequences of European Spinturnicidae parasitizing bats to assess the coevolutionary relationships between host and parasite lineages. Despite being a good investigation into bat ecology and exhibiting an indisputable competence in molecular data analysis, the paper reflects a lack of knowledge of the basic biology and ecology of Spinturnicidae. This shortcoming arises from the fact that the authors do not appropriately review earlier important studies, so that they reach dubious conclusions. Here we comment on their findings and suggest references related to their hypotheses.


Assuntos
Quirópteros/parasitologia , Ácaros/genética , Filogenia , Animais , Quirópteros/genética , Ectoparasitoses , Evolução Molecular , Interações Hospedeiro-Parasita , Ácaros/classificação
7.
BMC Evol Biol ; 10: 18, 2010 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-20089175

RESUMO

BACKGROUND: Despite its key location between the rest of the continent and Europe, research on the phylogeography of north African species remains very limited compared to European and North American taxa. The Mediterranean land mollusc Cornu aspersum (= Helix aspersa) is part of the few species widely sampled in north Africa for biogeographical analysis. It then provides an excellent biological model to understand phylogeographical patterns across the Mediterranean basin, and to evaluate hypotheses of population differentiation. We investigated here the phylogeography of this land snail to reassess the evolutionary scenario we previously considered for explaining its scattered distribution in the western Mediterranean, and to help to resolve the question of the direction of its range expansion (from north Africa to Europe or vice versa). By analysing simultaneously individuals from 73 sites sampled in its putative native range, the present work provides the first broad-scale screening of mitochondrial variation (cyt b and 16S rRNA genes) of C. aspersum. RESULTS: Phylogeographical structure mirrored previous patterns inferred from anatomy and nuclear data, since all haplotypes could be ascribed to a B (West) or a C (East) lineage. Alternative migration models tested confirmed that C. aspersum most likely spread from north Africa to Europe. In addition to Kabylia in Algeria, which would have been successively a centre of dispersal and a zone of secondary contacts, we identified an area in Galicia where genetically distinct west and east type populations would have regained contact. CONCLUSIONS: Vicariant and dispersal processes are reviewed and discussed in the light of signatures left in the geographical distribution of the genetic variation. In referring to Mediterranean taxa which show similar phylogeographical patterns, we proposed a parsimonious scenario to account for the "east-west" genetic splitting and the northward expansion of the western (B) clade which roughly involves (i) the dispersal of ancestral (eastern) types through Oligocene terranes in the Western Mediterranean (ii) the Tell Atlas orogenesis as gene flow barrier between future west and east populations, (iii) the impact of recurrent climatic fluctuations from mid-Pliocene to the last ice age, (iv) the loss of the eastern lineage during Pleistocene northwards expansion phases.


Assuntos
Genética Populacional , Haplótipos , Filogenia , Caramujos/genética , Animais , DNA Mitocondrial/genética , Geografia , Região do Mediterrâneo , Análise de Sequência de DNA , Caramujos/classificação
8.
BMC Evol Biol ; 8: 339, 2008 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-19099565

RESUMO

BACKGROUND: Present day distributions of Palearctic taxa in northern latitudes mainly result from populations having survived in local patches during the Late Pleistocene and/or from recolonizing populations from southern temperate refugia. If well-studied Mediterranean and eastern European refugia are widely accepted, some recent biogeographical assumptions still remain unclear, such as the occurrence of multiple glacial refugia in Iberia and cryptic refugia in northern Europe during the last glaciations. The Lusitanian snail Elona quimperiana has a remarkably disjunct distribution, limited to northwestern France (Brittany), northwestern Spain and the Basque Country. By describing the phylogeographical structure of this species across its entire range, the present study attempts to identify refugia and subsequent recolonization routes. RESULTS: Results based on 16S and COI gene sequences showed that the low genetic diversity observed in the Brittany populations should be associated with a recent demographic expansion. By contrast, populations from Spain exhibit several differentiated lineages and are characterized by demographic equilibrium, while the Basque populations are the only ones harboring typical distinct haplotypes. The center of the star-like networks of both gene sequences is occupied by a common ancestral-like haplotype found in Brittany and Spain, which might have originated from the middle of Northern Spain (i.e. Asturias, eastern Lugo and western Cantabria). Estimates of the divergence time between the Spain-Brittany and Basque lineages strongly suggest that E. quimperiana survived the Pleistocene glaciations in distinct refugia on the Iberian Peninsula, one of which is situated in Picos de Europa, and the other in the Basque Country. The occurrence of a northern refugium in France cannot be rejected as of yet. CONCLUSION: Present results confirm the Iberian origin of the land snail E. quimperiana and strongly support the emerging phylogeographic hypothesis of multiple refugia in Iberia during the last glaciations. The scenario of a spatial expansion of E. quimperiana from an Iberian refuge located in Asturias to northern areas provides the most probable explanation for the present distribution of this land snail. By harboring distinct haplotypes, the Basque Country populations appear to be of great importance in terms of potential adaptation, long term persistence and hence, the conservation of E. quimperiana.


Assuntos
Evolução Molecular , Genética Populacional , Filogenia , Caramujos/genética , Animais , DNA Ribossômico/genética , França , Variação Genética , Geografia , Haplótipos , Dinâmica Populacional , Alinhamento de Sequência , Análise de Sequência de DNA , Espanha
9.
Genet Res ; 88(1): 27-44, 2006 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-17014742

RESUMO

The present work provides the first broad-scale screening of allozymes in the land snail Helix aspersa. By using overall information available on the distribution of genetic variation between 102 populations previously investigated, we expect to strengthen our knowledge on the spread of the invasive aspersa subspecies in the Western Mediterranean. We propose a new approach based on a centre-based clustering procedure to cluster populations into groups following rules of geographical proximity and genetic similarity. Assuming a stepping-stone model of diffusion, we apply a partitioning algorithm which clusters only populations that are geographically contiguous. The algorithm used, which is actually part of leading methods developed for analysing large microarray datasets, is that of the k-means. Its goal is to minimize the within-group variance. The spatial constraint is provided by a list of connections between localities deduced from a Delaunay network. After testing each optimal group for the presence of spatial arrangement in the genetic data, the inferred genetic structure was compared with partitions obtained from other methods published for defining homogeneous groups (i.e. the Monmonier and SAMOVA algorithms). Competing biogeographical scenarios inferred from the k-means procedure were then compared and discussed to shed more light on colonization routes taken by the species.


Assuntos
Demografia , Variação Genética , Genética Populacional , Caracois Helix/genética , Animais , Análise por Conglomerados , Eletroforese , Frequência do Gene , Geografia , Isoenzimas/genética , Região do Mediterrâneo , Modelos Genéticos
10.
Evolution ; 52(6): 1635-1647, 1998 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28565313

RESUMO

Inbreeding depression was estimated from an outbreeding population of the freshwater snail Lymnaea peregra, on the basis of two successive generations of enforced selling and outcrossing, and 70 maternal lineages. Outcrossing was analyzed under two treatments, groups of two and five individuals. The fitness parameters measured included fecundity, growth, and survival. In the first generation, we contrasted three treatments (selfers vs. paired outcrossers and group outcrossers). Very similar results were obtained between the two outcrossing treatments. A strong self-fertilization depression (which includes parental fecundity and progeny fitness) was detected in the selling treatment (about 90%). In the second generation, there was again marked evidence for self-fertilization depression, with the highest contributions coming from parental fecundity and progeny hatching rate. Our results suggest that the decreased parental fecundity is a consequence of the mating system in the previous generation, although the role of partial self-incompatibility and the copulation behavior could not be ruled out. Hatching rate and early survival data are suggestive of purging of lethal mutations. Significant variation in fitness among selfing lineages was found for most fitness traits. Our experimental design also allowed to test for interactions among fitness loci. Only one trait of the nine studied behaved as expected under synergistic interactions. However we cannot rule out some purging during the experiment, which could have biased results towards linearity. Inbreeding depression was also inferred from the change of inbreeding level across generations in the same population. We obtained a value similar to the experimental estimate.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA