Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Canine Med Genet ; 9(1): 7, 2022 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-35596227

RESUMO

Dogs have an exquisite sense of olfaction. In many instances this ability has been utilized by humans for a wide range of important situations including detecting explosives and illegal drugs. It is accepted that some breeds have better senses of smell than others. Dogs can detect many volatile compounds at extremely low concentrations in air. To achieve such high levels of detection, the canine olfactory system is both complex and highly developed requiring a high density of olfactory receptors capable of detecting volatiles. Consequently the dog genome encodes a large number of olfactory receptor (OR) genes. However, it remains unclear as to what extent are all of these OR genes expressed on the cell surface. To facilitate such studies, a nasal brushing method was developed to recover dog nasal epithelial cell samples from which total RNA could be extracted and used to prepare high quality cDNA libraries. After capture by hybridization with an extensive set of oligonucleotides, the level of expression of each transcript was measured following next generation sequencing (NGS). The reproducibility of this sampling approach was checked by analyzing replicate samples from the same animal (up to 6 per each naris). The quality of the hybridization capture was also checked by analyzing two DNA libraries; this offered an advantage over RNA libraries by having an equal presence for each gene. Finally, we compared this brushing method performed on living dogs to a nasal epithelium biopsy approach applied to two euthanized terminally ill dogs, following consent from their owners.Comparison the expression levels of each transcript indicate that the ratios of expression between the highest and the least expressed OR in each sample are greater than 10,000 (paralog variation). Furthermore, it was clear that a number of OR genes are not expressed.The method developed and described here will allow researchers to further address whether variations observed in the OR transcriptome relate to dog 'life experiences' and whether any differences observed between samples are dog-specific or breed-specific.

2.
Sci Rep ; 8(1): 13444, 2018 09 07.
Artigo em Inglês | MEDLINE | ID: mdl-30194329

RESUMO

Long non-coding RNAs (lncRNAs) are a family of heterogeneous RNAs that play major roles in multiple biological processes. We recently identified an extended repertoire of more than 10,000 lncRNAs of the domestic dog however, predicting their biological functionality remains challenging. In this study, we have characterised the expression profiles of 10,444 canine lncRNAs in 26 distinct tissue types, representing various anatomical systems. We showed that lncRNA expressions are mainly clustered by tissue type and we highlighted that 44% of canine lncRNAs are expressed in a tissue-specific manner. We further demonstrated that tissue-specificity correlates with specific families of canine transposable elements. In addition, we identified more than 900 conserved dog-human lncRNAs for which we show their overall reproducible expression patterns between dog and human through comparative transcriptomics. Finally, co-expression analyses of lncRNA and neighbouring protein-coding genes identified more than 3,400 canine lncRNAs, suggesting that functional roles of these lncRNAs act as regulatory elements. Altogether, this genomic and transcriptomic integrative study of lncRNAs constitutes a major resource to investigate genotype to phenotype relationships and biomedical research in the dog species.


Assuntos
Bases de Dados de Ácidos Nucleicos , Regulação da Expressão Gênica/fisiologia , RNA Longo não Codificante/biossíntese , Transcriptoma , Animais , Cães , Humanos , Especificidade de Órgãos , RNA Longo não Codificante/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA