Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
An Acad Bras Cienc ; 91(4): e20180696, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31800696

RESUMO

Several microbiological indicators of soil quality present high sensitivity, but little is known about the influence of topographic factors on them. This work aimed to evaluate variability of biological indicators of soil quality across a hillslope under native forest and the influence of topographic factors on them. Four positions on a hillslope were evaluated. Activity of the enzymes ß-glucosidase, acid phosphatase, urease and fluorescein diacetate (FDA) hydrolysis were determined, as well as basal and substrate-induced respiration, and density of microorganisms: total bacteria, total fungi, actinobacteria, phosphate solubilizers, ammonifiers, native rhizobia, free-living N2-fixing bacteria, spores of arbuscular mycorrhizal fungi and percentage of root colonization by arbuscular mycorrhizal fungi. Activity and density of microorganisms were correlated with topographic factors. The relation of these factors to the variations of the evaluated indicators was determined using the random forest algorithm. Microbiological indicators varied according to the hillslope positions. The indicators urease, basal respiration, spore density, mycorrhizal colonization, total bacteria and fungi, phosphate solubilizers, and free-living N2-fixing bacteria detected in JNFB and FAM culture medium did not vary with terrain attributes and were therefore more indicated in cases of topographic variations. This and future studies can help to select the best microbiological indicators for different conditions.


Assuntos
Monitoramento Ambiental , Florestas , Geografia , Microbiologia do Solo
2.
Int J Phytoremediation ; 19(10): 925-936, 2017 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-28323446

RESUMO

Efficient N2-fixing Leguminosae nodulating bacteria resistant to As may facilitate plant growth on As-contaminated sites. In order to identify bacteria holding these features, 24 strains were isolated from nodules of the trap species Crotalaria spectabilis (12) and Stizolobium aterrimum (12) growing on an As-contaminated gold mine site. 16S rRNA gene sequencing revealed that most of the strains belonged to the group of α-Proteobacteria, being representatives of the genera Bradyrhizobium, Rhizobium, Inquilinus, Labrys, Bosea, Starkeya, and Methylobacterium. Strains of the first four genera showed symbiotic efficiency with their original host, and demonstrated in vitro specific plant-growth-promoting (PGP) traits (production of organic acids, indole-3-acetic-acid and siderophores, 1-aminocyclopropane-1-carboxylate deaminase activity, and Ca3(PO4)2 solubilization), and increased resistance to As, Zn, and Cd. In addition, these strains and some type and reference rhizobia strains exhibited a wide resistance spectrum to ß-lactam antibiotics. Both intrinsic PGP abilities and multi-element resistance of rhizobia are promising for exploiting the symbiosis with different legume plants on trace-element-contaminated soils.


Assuntos
Arsênio/metabolismo , Bactérias/metabolismo , Fabaceae/microbiologia , Poluentes do Solo/metabolismo , Biodegradação Ambiental , Ouro , Minerais , Mineração , Desenvolvimento Vegetal , Plantas , RNA Ribossômico 16S , Solo , Oligoelementos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA